Jump to content

Natalia Dubrovinskaia

From Wikipedia, the free encyclopedia
Natalia Dubrovinskaia
Born (1961-02-18) 18 February 1961 (age 63)
Academic background
EducationMoscow State University (MSc, PhD)
Academic work
DisciplineGeology
Sub-disciplineCrystallography
InstitutionsUniversity of Bayreuth
Heidelberg University

Natalia Dubrovinskaia (born 18 February 1961) is a Swedish geologist of Russian origin.

Education

[edit]

In 1983, Dubrovinskaia earned a Master of Science degree in geochemistry from Moscow State University. In 1989, she received her Ph.D. in crystallography and crystal physics at the same institution. She worked as a senior researcher fellow until 2007, completing her habilitation of crystallography and Umhabilitation the following year at University of Bayreuth, Germany.[1][2] In 2011, she worked as a staff scientist at the University of Heidelberg.

Career

[edit]

Dubrovinskaia was a research fellow at the Ministry of Geology and a postdoctoral researcher at Uppsala University.

In 2005, she led a team of researchers from the University of Bayreuth that was reported to have produced aggregated diamond nanorods from fullerene under high temperatures and pressures.[3][4][5] Two years earlier, Japanese researchers had produced large samples of nanodiamond from graphite in a more cost-effective way and discovered to be harder than diamond.[6]

From 2007 to 2011, Dubrovinskaia worked at the Heidelberg University in Germany as a Privatdozent and senior scientist. Since then, she returned to University of Bayreuth, where she is employed as Professor of Materials Physics and Technology at Extreme Conditions.[1][2]

From 2012 to 2014, Dubrovinskaia was the Editor-in-Chief of the International Journal of Materials and Chemistry.[1]

Personal life

[edit]

Dubrovinskaia is married to Leonid Dubrovinsky, a geoscientist at University of Bayreuth.[7] Together, both she and her husband have been working as a scientific team for the past four decades.

Research

[edit]

Throughout her career, Dubrovinskaia has published over 246 papers covering a variety of topics but mostly focusing on crystallography, diamond anvil cells, analytical chemistry, diffraction and diamond.[8] Her extensive research in the field of biology encompasses various subjects such as X-ray crystallography, bulk modulus, and boron. Additionally, her investigation using diamond anvil cells focus on areas such as mineralogy—specifically related to mantle and stishovite—as well as thermodynamics, which has connections to fields like Earth's core studies.

Her works in analytical chemistry encompasses ab initio quantum chemistry methods and ambient pressure, while her diffraction study integrates various areas, including elasticity, phase transitions, single crystals, synchrotron, and isostructural phenomena. Her investigation delves into the correlation between diamond and topics such as chemical engineering, intersecting with challenges in metal-related issues. Furthermore, she has also done research into a new method of synthesizing rare earth-metal compounds. In this research, her primary was on exploring the intriguing reactivity of alkali halides, like common table salt (NaCl), when subjected to high pressure in the presence of rare-earth metals such as yttrium and dysprosium.[9]

Publications

[edit]

Natalia Dubrovinskaia has been an author or affiliate of these publications.

Year Date Publication title and description
2001 May 21 Pressure-Induced Invar Effect in Fe-Ni Alloys. The pressure-volume relations were measured for three different Iron-nickel alloys. It was observed in ambient pressure, that Fe-Ni alloys with high Ni concentrations had positive thermal expansion.[10]
2001 December 7 Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph. They discovered a new polymorph of titanium dioxide.[11]
2004 May 17 Titanium metal at high pressure: Synchrotron experiments and ab initio calculations. They are investigating the behaviour of titanium metal under high pressure.[12]
2004 September 2 Cubic TiO2 as a potential light absorber in solar-energy conversion. The electronic structural properties of cubic TiO2 polymorphs were investigated using the first-principles method.[13]
2004 December 1 High-pressure and high-temperature synthesis of the cubic TiO2 polymorph. This experiment suggested that when IV 𝐴⁢𝐵 and IV 𝐴 element dioxides follow the same transformation path under high temperature and elevated pressure.[14]
2005 March 24 Structural characterization of the hard fullerite phase obtained at 13GPa and 830K.[15]
2005 December 8 Beating the Miscibility Barrier between Iron Group Elements and Magnesium by High-Pressure Alloying.[16]
2007 January 25 Noblest of All Metals Is Structurally Unstable at High Pressure. It is shown that gold adopts a hexagonal–close-packed structure, under pressure above 240 GPa.[17]
2007 October 19 Pure Iron Compressed and Heated to Extreme Conditions. It is indicated that in the pressure-temperature region above 160 GPa and 3700 K, the fcc phase of iron can exist.[18]
2009 May 7 Superhard Semiconducting Optically Transparent High-Pressure Phase of Boron. At high temperatures and pressures above 9 GPa to 30 GPa an orthorhombic (space group 𝑃⁢𝑛⁢𝑛⁢𝑚) boron phase was shown to be stable.[19]
2010 November 18 Pressure-induced isostructural phase transformation in γ-B28.[20]
2011 April 21 Impact of lattice vibrations on the equation of state of the hardest boron phase.[21]
2011 May 25 Electron-Deficient and Polycenter Bonds in the High-Pressure γ−B28 Phase of Boron.[22]
2011 October 17 Missing-atom structure of diamond Σ5 (001) twist grain boundary. This experiment was about achieving the conditions in which grain boundaries are equilibrated.[23]
2013 July 29 Experimental evidence of orbital order in α-B12 and γ-B28 polymorphs of elemental boron.[24]
2013 October 7 Discovery of a Superhard Iron Tetraboride Superconductor.[25]
2013 November 19 High-pressure behaviour of structural, optical, and electronic transport properties of the golden Th2S3-type Ti2O3.[26]
2014 January 15 Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses.[27]
2014 February 24 Peierls distortion, magnetism, and high hardness of manganese tetraboride. In high-pressure and high temperatures, crystal structure, electronic structure, and magnetism of manganese tetraboride, MnB4 were synthesized.[28]
2016 May 26 Pressure-induced crossing of the core levels in 5d metals.[29]
2017 May 16 Nonicosahedral boron allotrope synthesized at high pressure and high temperature.[30]
2018 June 8 Breakdown of Magnetic Order in the Pressurized Kitaev Iridate β−Li2IrO3.[31]
2019 July 17 Pressure-Induced Hydrogen-Hydrogen Interaction in Metallic FeH Revealed by NMR.[32]
2019 September 23 Improving resolution of solid state NMR in dense molecular hydrogen.[33]
2020 N/A Materials synthesis and crystallography at extreme pressure-temperature conditions revealing remarkable material properties.[34]
2020 May 28 High-Pressure Polymeric Nitrogen Allotrope with the Black Phosphorus Structure.[35]
2020 October 8 Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance.[36]
2020 October 15 Novel sulfur hydrides synthesized at extreme conditions.[37]
2021 March 12 Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound FeO2.[38]
2021 April 26 High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded BeN4 Polymorph.[39]
2021 September 22 Novel High-Pressure Yttrium Carbide γ−Y4C5 Containing [C2] and Nonlinear [C3] Units with Unusually Large Formal Charges.[40]
2022 February 14 High-pressure Na3(N2)4, Ca3(N2)4, Sr3(N2)4, and Ba(N2)3 featuring nitrogen dimers with noninteger charges and anion-driven metallicity.[41]
2022 October 1 Domain Auto Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples.[42]
2022 November 18 Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany.[43]
2023 January 9 High-pressure hP3 yttrium allotrope with CaHg2-type structure as a prototype of the hP3 rare-earth hydride series.[44]

Awards and positions

[edit]
Year Award Title and Information
1989 Natalia Dubrovinskaia received an Innovation Award from the USSR's Ministry of Geology for her contribution to geological advancements. The USSR (Union of Soviet Socialist Republics) was responsible for managing geological research, exploration, and development of mineral resources across the Soviet Union.
2005 Dubrovinskaia was honoured with a second Innovation Award from the USSR's Ministry of Geology for her ongoing contributions to geological sciences.
2006 Dubrovinskaia contributed as guest editor for a special issue of the High Pressure Research International Journal.
Since 2006 Dubrovinskaia has contributed as a reviewer for prestigious organizations such as the Swedish Research Council (VR), the German Research Foundation (DFG), the Danish Council for Independent Research (DCIR), the European Science Foundation (ESF), the National Science Foundation (NSF), the Research Council of Lithuania, the Danish Council for Independent Research (DCIR), the State National Science Award Commission (SNSAC of PRC), and the French National Research Agency (ANR).
Since 2006 Dubrovinskaia was a member of the American Physical Society (APS), German Physical Society (DPG), German Crystallographic Society (DGK), and the European Crystallographic Association (ECA).
2011 Dubrovinskaia contributed as guest editor for a special issue of the International Journal Materials.
2012-14 Dubrovinskaia held the position of chief editor of the International Journal of Materials and Chemistry, overseeing significant projects in the geological field.
2013-16 Dubrovinskaia was a peer review panel member for the Diamond Light Source in the UK, where she evaluated proposals and recommended how to distribute the beam time allocation.
2014 Dubrovinskaia was a speaker for the Organizing Committee for the International Year of Crystallography at the public research University of Bayreuth, Germany.
2014 Dubrovinskaia participated in the 52nd European High-Pressure Research Group International Meeting as a member of the International Advisory Committee.
2016 Dubrovinskaia was responsible for organizing and chairing the 54th EHPRG International Meeting of High-Pressure Science and Technology, held in Bayreuth, Germany.
2016 Dubrovinskaia served as guest editor for the special issue titled "Advances in High-Pressure Science and Technology" of the high-Pressure Research International Journal's.
2016-18 Dubrovinskaia was a member of the Beam Time Allocation Panel C05 at the European Synchrotron Radiation Facilities.
Since 2016 Dubrovinskaia was a member of the Scientific Reports Editorial Board at Nature Publishing Group, specializing in Chemical Physics.
2017 Dubrovinskaia was a member of the evaluation panel for the Swedish Research Council's 2017 call in the Natural and Engineering Sciences in Sweden.
2017 The Sweden Gregori Aminoff Prize was awarded to Dubrovinskaia from the University of Bayreuth Institute. She received this award for developing a new method to directly study crystal structures under extreme heat and pressure.
2018 Dubrovinskaia participated in the Assessment Review Board for the Leibniz Institute for Crystal Growth (IKZ) in Berlin, Germany.
2018 Dubrovinskaia was Invited to serve as the Convener for the Subtheme "Unconventional Syntheses of Inorganic Solids" at the 7th EuCheMS Chemistry Congress, hosted by the Royal Society of Chemistry (RSC) in Liverpool, UK. While serving as the Converner for the Subtheme she led discussions on innovative methods for synthesizing inorganic solid materials.
2019 Dubrovinskaia served as a research fellow and visiting professor at the Laboratory of Geosciences Environment, Observatoire Midi-Pyrénées in Toulouse, France.
2019 Dubrovinskaia was selected to be a member of the International Union of Crystallography's (IUCr) Ewald Prize 2020 Selection Committee. The Ewald Prize is awarded to individuals who significantly contribute to the field of crystallography, consisting of a metal, certificate, and a financial award. The selection of Dubrovinskaia for the IUCr expresses her expertises in crystallography.

[45]

References

[edit]
  1. ^ a b c Bayreuth, Universität. "Prof. Dr. Dr. h. c. Natalia Dubrovinskaia". www.dubrovinskaia.uni-bayreuth.de. Retrieved 2022-07-21.
  2. ^ a b "Prof. Dr. Dr. h. c. Natalia Dubrovinskaia". orcid.org. Retrieved 2023-10-05.
  3. ^ Knight W. (30 August 2005). "Nano-material is harder than diamonds". New Scientist. Retrieved 2009-01-18.
  4. ^ Jeandron M. (26 August 2005). "Diamonds are not forever". Physics World. Retrieved 2009-01-18.
  5. ^ Dubrovinskaia N.; Dubrovinsky L.; Crichton W.; Langenhorst F.; Richter A. (2005). "Aggregated diamond nanorods, the densest and least compressible form of carbon". Applied Physics Letters. 87 (8): 083106. Bibcode:2005ApPhL..87h3106D. doi:10.1063/1.2034101.
  6. ^ Irifune T.; Kurio A.; Sakamoto S.; Inoue T.; Sumiya H. (2003). "Materials: Ultrahard polycrystalline diamond from graphite". Nature. 421 (6923): 599–600. Bibcode:2003Natur.421..599I. doi:10.1038/421599b. PMID 12571587. S2CID 52856300.
  7. ^ "Leonid Dubrovinsky - geoscientist at the University of Bayreuth (Germany) and ESRF user | Lightsources". 2016-08-20. Archived from the original on 2016-08-20. Retrieved 2022-07-21.
  8. ^ "Web of Science". www.webofscience.com. Retrieved 2023-10-06.
  9. ^ Evans, Bree (December 12, 2023). "Paper by Natalia Dubrovinskaia highlighted as an editor favourite at Communications Chemistry, a Nature journal".
  10. ^ Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Abrikosov, Igor A.; Vennström, Marie; Westman, Frank; Carlson, Stefan; van Schilfgaarde, Mark; Johansson, Börje (2001-05-21). "Pressure-Induced Invar Effect in Fe-Ni Alloys". Physical Review Letters. 86 (21): 4851–4854. Bibcode:2001PhRvL..86.4851D. doi:10.1103/PhysRevLett.86.4851. PMID 11384364.
  11. ^ Dubrovinskaia, Natalia A.; Dubrovinsky, Leonid S.; Ahuja, Rajeev; Prokopenko, Vitaly B.; Dmitriev, V.; Weber, H.-P.; Osorio-Guillen, J. M.; Johansson, Börje (2001-12-07). "Experimental and Theoretical Identification of a New High-Pressure ${\mathrm{TiO}}_{2}$ Polymorph". Physical Review Letters. 87 (27): 275501. doi:10.1103/PhysRevLett.87.275501. PMID 11800890.
  12. ^ Ahuja, Rajeev; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Guillen, J. M. Osorio; Mattesini, Maurizio; Johansson, Börje; Le Bihan, Tristan (2004-05-17). "Titanium metal at high pressure: Synchrotron experiments and ab initio calculations". Physical Review B. 69 (18): 184102. Bibcode:2004PhRvB..69r4102A. doi:10.1103/PhysRevB.69.184102.
  13. ^ Mattesini, M.; de Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. (2004-09-02). "Cubic ${\mathrm{TiO}}_{2}$ as a potential light absorber in solar-energy conversion". Physical Review B. 70 (11): 115101. doi:10.1103/PhysRevB.70.115101.
  14. ^ Mattesini, M.; de Almeida, J. S.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Ahuja, R. (2004-12-01). "High-pressure and high-temperature synthesis of the cubic $\mathrm{Ti}{\mathrm{O}}_{2}$ polymorph". Physical Review B. 70 (21): 212101. doi:10.1103/PhysRevB.70.212101.
  15. ^ Talyzin, A. V.; Langenhorst, F.; Dubrovinskaia, N.; Dub, S.; Dubrovinsky, L. S. (2005-03-24). "Structural characterization of the hard fullerite phase obtained at $13\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ and $830\phantom{\rule{0.3em}{0ex}}\mathrm{K}$". Physical Review B. 71 (11): 115424. doi:10.1103/PhysRevB.71.115424.
  16. ^ Dubrovinskaia, N.; Dubrovinsky, L.; Kantor, I.; Crichton, W. A.; Dmitriev, V.; Prakapenka, V.; Shen, G.; Vitos, L.; Ahuja, R.; Johansson, B.; Abrikosov, I. A. (2005-12-08). "Beating the Miscibility Barrier between Iron Group Elements and Magnesium by High-Pressure Alloying". Physical Review Letters. 95 (24): 245502. Bibcode:2005PhRvL..95x5502D. doi:10.1103/PhysRevLett.95.245502. PMID 16384393.
  17. ^ Dubrovinsky, L.; Dubrovinskaia, N.; Crichton, W. A.; Mikhaylushkin, A. S.; Simak, S. I.; Abrikosov, I. A.; de Almeida, J. S.; Ahuja, R.; Luo, W.; Johansson, B. (2007-01-25). "Noblest of All Metals Is Structurally Unstable at High Pressure". Physical Review Letters. 98 (4): 045503. Bibcode:2007PhRvL..98d5503D. doi:10.1103/PhysRevLett.98.045503. PMID 17358786.
  18. ^ Mikhaylushkin, A. S.; Simak, S. I.; Dubrovinsky, L.; Dubrovinskaia, N.; Johansson, B.; Abrikosov, I. A. (2007-10-19). "Pure Iron Compressed and Heated to Extreme Conditions". Physical Review Letters. 99 (16): 165505. Bibcode:2007PhRvL..99p5505M. doi:10.1103/PhysRevLett.99.165505. PMID 17995267.
  19. ^ Zarechnaya, E. Yu.; Dubrovinsky, L.; Dubrovinskaia, N.; Filinchuk, Y.; Chernyshov, D.; Dmitriev, V.; Miyajima, N.; El Goresy, A.; Braun, H. F.; Van Smaalen, S.; Kantor, I.; Kantor, A.; Prakapenka, V.; Hanfland, M.; Mikhaylushkin, A. S. (2009-05-07). "Superhard Semiconducting Optically Transparent High Pressure Phase of Boron". Physical Review Letters. 102 (18): 185501. Bibcode:2009PhRvL.102r5501Z. doi:10.1103/PhysRevLett.102.185501. PMID 19518885.
  20. ^ Zarechnaya, Evgeniya; Dubrovinskaia, Natalia; Caracas, Razvan; Merlini, Marco; Hanfland, Michael; Filinchuk, Yaroslav; Chernyshov, Dmitry; Dmitriev, Vladimir; Dubrovinsky, Leonid (2010-11-18). "Pressure-induced isostructural phase transformation in $\ensuremath{\gamma}{\text{-B}}_{28}$". Physical Review B. 82 (18): 184111. doi:10.1103/PhysRevB.82.184111.
  21. ^ Isaev, E. I.; Simak, S. I.; Mikhaylushkin, A. S.; Vekilov, Yu. Kh.; Zarechnaya, E. Yu.; Dubrovinsky, L.; Dubrovinskaia, N.; Merlini, M.; Hanfland, M.; Abrikosov, I. A. (2011-04-21). "Impact of lattice vibrations on equation of state of the hardest boron phase". Physical Review B. 83 (13): 132106. Bibcode:2011PhRvB..83m2106I. doi:10.1103/PhysRevB.83.132106.
  22. ^ Mondal, Swastik; van Smaalen, Sander; Schönleber, Andreas; Filinchuk, Yaroslav; Chernyshov, Dmitry; Simak, Sergey I.; Mikhaylushkin, Arkady S.; Abrikosov, Igor A.; Zarechnaya, Evgeniya; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2011-05-25). "Electron-Deficient and Polycenter Bonds in the High-Pressure $\ensuremath{\gamma}\mathrm{\text{\ensuremath{-}}}{\mathrm{B}}_{28}$ Phase of Boron". Physical Review Letters. 106 (21): 215502. doi:10.1103/PhysRevLett.106.215502. PMID 21699313.
  23. ^ Steneteg, Peter; Chirita, Valeriu; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Abrikosov, Igor A. (2011-10-17). "Missing-atom structure of diamond $\ensuremath{\Sigma}$5 (001) twist grain boundary". Physical Review B. 84 (14): 144112. doi:10.1103/PhysRevB.84.144112.
  24. ^ Mondal, Swastik; van Smaalen, Sander; Parakhonskiy, Gleb; Prathapa, Siriyara Jagannatha; Noohinejad, Leila; Bykova, Elena; Dubrovinskaia, Natalia; Chernyshov, Dmitry; Dubrovinsky, Leonid (2013-07-29). "Experimental evidence of orbital order in $\ensuremath{\alpha}$-B${}_{12}$ and $\ensuremath{\gamma}$-B${}_{28}$ polymorphs of elemental boron". Physical Review B. 88 (2): 024118. doi:10.1103/PhysRevB.88.024118.
  25. ^ Gou, Huiyang; Dubrovinskaia, Natalia; Bykova, Elena; Tsirlin, Alexander A.; Kasinathan, Deepa; Schnelle, Walter; Richter, Asta; Merlini, Marco; Hanfland, Michael; Abakumov, Artem M.; Batuk, Dmitry; Van Tendeloo, Gustaaf; Nakajima, Yoichi; Kolmogorov, Aleksey N.; Dubrovinsky, Leonid (2013-10-07). "Discovery of a Superhard Iron Tetraboride Superconductor". Physical Review Letters. 111 (15): 157002. arXiv:1304.5106. Bibcode:2013PhRvL.111o7002G. doi:10.1103/PhysRevLett.111.157002. PMID 24160619. S2CID 11906548.
  26. ^ Ovsyannikov, Sergey V.; Wu, Xiang; Garbarino, Gaston; Núñez-Regueiro, Manuel; Shchennikov, Vladimir V.; Khmeleva, Julia A.; Karkin, Alexander E.; Dubrovinskaia, Natalia; Dubrovinsky, Leonid (2013-11-19). "High-pressure behavior of structural, optical, and electronic transport properties of the golden Th${}_{2}$S${}_{3}$-type Ti${}_{2}$O${}_{3}$". Physical Review B. 88 (18): 184106. doi:10.1103/PhysRevB.88.184106.
  27. ^ Chumakov, A. I.; Monaco, G.; Fontana, A.; Bosak, A.; Hermann, R. P.; Bessas, D.; Wehinger, B.; Crichton, W. A.; Krisch, M.; Rüffer, R.; Baldi, G.; Carini Jr., G.; Carini, G.; D’Angelo, G.; Gilioli, E. (2014-01-15). "Role of Disorder in the Thermodynamics and Atomic Dynamics of Glasses". Physical Review Letters. 112 (2): 025502. Bibcode:2014PhRvL.112b5502C. doi:10.1103/PhysRevLett.112.025502. hdl:11572/173689. PMID 24484025. S2CID 5646081.
  28. ^ Gou, Huiyang; Tsirlin, Alexander A.; Bykova, Elena; Abakumov, Artem M.; Van Tendeloo, Gustaaf; Richter, Asta; Ovsyannikov, Sergey V.; Kurnosov, Alexander V.; Trots, Dmytro M.; Konôpková, Zuzana; Liermann, Hans-Peter; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2014-02-24). "Peierls distortion, magnetism, and high hardness of manganese tetraboride". Physical Review B. 89 (6): 064108. arXiv:1312.6982. Bibcode:2014PhRvB..89f4108G. doi:10.1103/PhysRevB.89.064108. S2CID 118539274.
  29. ^ Tal, Alexey A.; Katsnelson, Mikhail I.; Ekholm, Marcus; Jönsson, H. Johan M.; Dubrovinsky, Leonid; Dubrovinskaia, Natalia; Abrikosov, Igor A. (2016-05-26). "Pressure-induced crossing of the core levels in $5d$ metals". Physical Review B. 93 (20): 205150. arXiv:1509.07433. Bibcode:2016PhRvB..93t5150T. doi:10.1103/PhysRevB.93.205150. S2CID 7424868.
  30. ^ Chuvashova, Irina; Bykova, Elena; Bykov, Maxim; Prakapenka, Vitali; Glazyrin, Konstantin; Mezouar, Mohamed; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2017-05-16). "Nonicosahedral boron allotrope synthesized at high pressure and high temperature". Physical Review B. 95 (18): 180102. arXiv:1702.03804. Bibcode:2017PhRvB..95r0102C. doi:10.1103/PhysRevB.95.180102.
  31. ^ Majumder, M.; Manna, R. S.; Simutis, G.; Orain, J. C.; Dey, T.; Freund, F.; Jesche, A.; Khasanov, R.; Biswas, P. K.; Bykova, E.; Dubrovinskaia, N.; Dubrovinsky, L. S.; Yadav, R.; Hozoi, L.; Nishimoto, S. (2018-06-08). "Breakdown of Magnetic Order in the Pressurized Kitaev Iridate $\ensuremath{\beta}\text{\ensuremath{-}}{\mathrm{Li}}_{2}{\mathrm{IrO}}_{3}$". Physical Review Letters. 120 (23): 237202. arXiv:1802.06819. doi:10.1103/PhysRevLett.120.237202. PMID 29932706. S2CID 49386986.
  32. ^ Meier, Thomas; Trybel, Florian; Khandarkhaeva, Saiana; Steinle-Neumann, Gerd; Chariton, Stella; Fedotenko, Timofey; Petitgirard, Sylvain; Hanfland, Michael; Glazyrin, Konstantin; Dubrovinskaia, Natalia; Dubrovinsky, Leonid (2019-07-17). "Pressure-Induced Hydrogen-Hydrogen Interaction in Metallic FeH Revealed by NMR". Physical Review X. 9 (3): 031008. arXiv:1902.03182. Bibcode:2019PhRvX...9c1008M. doi:10.1103/PhysRevX.9.031008.
  33. ^ "Improving resolution of solid state NMR in dense molecular hydrogen". scholar.google.com.hk. Retrieved 2023-12-08.
  34. ^ "Materials synthesis and crystallography at extreme pressure-temperature conditions revealing remarkable materials properties". scholar.google.com.hk. Retrieved 2023-12-08.
  35. ^ Laniel, Dominique; Winkler, Bjoern; Fedotenko, Timofey; Pakhomova, Anna; Chariton, Stella; Milman, Victor; Prakapenka, Vitali; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2020-05-28). "High-Pressure Polymeric Nitrogen Allotrope with the Black Phosphorus Structure". Physical Review Letters. 124 (21): 216001. arXiv:2003.02758. Bibcode:2020PhRvL.124u6001L. doi:10.1103/PhysRevLett.124.216001. PMID 32530671. S2CID 212414928.
  36. ^ Meier, Thomas; Trybel, Florian; Criniti, Giacomo; Laniel, Dominique; Khandarkhaeva, Saiana; Koemets, Egor; Fedotenko, Timofey; Glazyrin, Konstantin; Hanfland, Michael; Bykov, Maxim; Steinle-Neumann, Gerd; Dubrovinskaia, Natalia; Dubrovinsky, Leonid (2020-10-08). "Proton mobility in metallic copper hydride from high-pressure nuclear magnetic resonance". Physical Review B. 102 (16): 165109. arXiv:2004.03952. Bibcode:2020PhRvB.102p5109M. doi:10.1103/PhysRevB.102.165109. S2CID 228947126.
  37. ^ Laniel, Dominique; Winkler, Bjoern; Bykova, Elena; Fedotenko, Timofey; Chariton, Stella; Milman, Victor; Bykov, Maxim; Prakapenka, Vitali; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2020-10-15). "Novel sulfur hydrides synthesized at extreme conditions". Physical Review B. 102 (13): 134109. Bibcode:2020PhRvB.102m4109L. doi:10.1103/PhysRevB.102.134109. S2CID 228944833.
  38. ^ Koemets, E.; Leonov, I.; Bykov, M.; Bykova, E.; Chariton, S.; Aprilis, G.; Fedotenko, T.; Clément, S.; Rouquette, J.; Haines, J.; Cerantola, V.; Glazyrin, K.; McCammon, C.; Prakapenka, V. B.; Hanfland, M. (2021-03-12). "Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound ${\mathrm{FeO}}_{2}$". Physical Review Letters. 126 (10): 106001. arXiv:1905.05497. doi:10.1103/PhysRevLett.126.106001. PMID 33784165. S2CID 224814261.
  39. ^ Bykov, Maxim; Fedotenko, Timofey; Chariton, Stella; Laniel, Dominique; Glazyrin, Konstantin; Hanfland, Michael; Smith, Jesse S.; Prakapenka, Vitali B.; Mahmood, Mohammad F.; Goncharov, Alexander F.; Ponomareva, Alena V.; Tasnádi, Ferenc; Abrikosov, Alexei I.; Bin Masood, Talha; Hotz, Ingrid (2021-04-26). "High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded ${\mathrm{BeN}}_{4}$ Polymorph". Physical Review Letters. 126 (17): 175501. arXiv:2010.15774. doi:10.1103/PhysRevLett.126.175501. PMID 33988447. S2CID 227840429.
  40. ^ Aslandukova, Alena; Aslandukov, Andrey; Yuan, Liang; Laniel, Dominique; Khandarkhaeva, Saiana; Fedotenko, Timofey; Steinle-Neumann, Gerd; Glazyrin, Konstantin; Dubrovinskaia, Natalia; Dubrovinsky, Leonid (2021-09-22). "Novel High-Pressure Yttrium Carbide $\ensuremath{\gamma}\text{\ensuremath{-}}{\mathrm{Y}}_{4}{\mathrm{C}}_{5}$ Containing [${\mathrm{C}}_{2}$] and Nonlinear [${\mathrm{C}}_{3}$] Units with Unusually Large Formal Charges". Physical Review Letters. 127 (13): 135501. doi:10.1103/PhysRevLett.127.135501. PMID 34623860. S2CID 238530037.
  41. ^ Laniel, Dominique; Winkler, Bjoern; Fedotenko, Timofey; Aslandukova, Alena; Aslandukov, Andrey; Vogel, Sebastian; Meier, Thomas; Bykov, Maxim; Chariton, Stella; Glazyrin, Konstantin; Milman, Victor; Prakapenka, Vitali; Schnick, Wolfgang; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2022-02-14). "High-pressure ${\mathrm{Na}}_{3}{({\mathrm{N}}_{2})}_{4},$ ${\mathrm{Ca}}_{3}{({\mathrm{N}}_{2})}_{4},$ ${\mathrm{Sr}}_{3}{({\mathrm{N}}_{2})}_{4},$ and $\mathrm{Ba}{({\mathrm{N}}_{2})}_{3}$ featuring nitrogen dimers with noninteger charges and anion-driven metallicity". Physical Review Materials. 6 (2): 023402. doi:10.1103/PhysRevMaterials.6.023402. S2CID 235166701.
  42. ^ "Domain Auto Finder (DAFi) program: the analysis of single-crystal X-ray diffraction data from polycrystalline samples". scholar.google.com.hk. Retrieved 2023-12-08.
  43. ^ "Tin weathering experiment set by nature for 300 years: natural crystals of the anthropogenic mineral hydroromarchite from Creussen, Bavaria, Germany". scholar.google.com.hk. Retrieved 2023-12-08.
  44. ^ Aslandukova, Alena; Aslandukov, Andrey; Laniel, Dominique; Khandarkhaeva, Saiana; Steinle-Neumann, Gerd; Fedotenko, Timofey; Ovsyannikov, Sergey V.; Yin, Yuqing; Akbar, Fariia Iasmin; Glazyrin, Konstantin; Hanfland, Michael; Dubrovinsky, Leonid; Dubrovinskaia, Natalia (2023-01-09). "High-pressure $hP3$ yttrium allotrope with $\mathrm{Ca}{\mathrm{Hg}}_{2}$-type structure as a prototype of the $hP3$ rare-earth hydride series". Physical Review B. 107 (1): 014103. doi:10.1103/PhysRevB.107.014103. hdl:20.500.11820/6ee9be7f-d77d-4614-a945-2c460b49d71e. S2CID 255710157.
  45. ^ "Prof. Dr. Dr. h. c. Natalia Dubrovinskaia". www.dubrovinskaia.uni-bayreuth.de. Retrieved 2023-12-11.