Jump to content

Modular unit

From Wikipedia, the free encyclopedia

In mathematics, modular units are certain units of rings of integers of fields of modular functions, introduced by Kubert and Lang (1975). They are functions whose zeroes and poles are confined to the cusps (images of infinity).

See also

[edit]

References

[edit]
  • Kubert, Daniel S.; Lang, Serge (1981), Modular units, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 244, Berlin, New York: Springer-Verlag, ISBN 978-0-387-90517-4, MR 0648603, Zbl 0492.12002
  • Kubert, Daniel S.; Lang, Serge (1975), "Units in the modular function field. I", Mathematische Annalen, 218 (1): 67–96, doi:10.1007/BF01350068, ISSN 0025-5831, MR 0437496, Zbl 0311.14005