Jump to content

Mesodinium

From Wikipedia, the free encyclopedia

Mesodinium
Mesodinium species containing green plastids taken from cryptophyte prey[1]
Scientific classification
Domain:
(unranked):
(unranked):
Phylum:
Class:
Order:
Family:
Genus:
Mesodinium
Species

Mesodinium is a genus of ciliates that are widely distributed and are abundant in marine and brackish waters.[2][3]

Currently, six marine species of Mesodinium have been described and grouped by nutritional mode: plastidic (M. chamaeleon, M. coatsi, M. major, and M. rubrum) or heterotrophic (M. pulex and M. pupula). There is some debate as to whether the nutritional mode of plastidic Mesodinium species is phototrophic (permanent plastid) or mixotrophic.[4][5] Among the plastidic species, wild M. major and M. rubrum populations possess red plastids belonging to genera Teleaulax, Plagioselmis, and Geminigera,[6][7][8] while wild M. chamaeleon and M. coatsi populations normally contain green plastids.[9][10][11] The availability of suitable cryptophyte prey is important for bloom formation of plastidic Mesodinium species.[1]

The most common species, Mesodinium rubrum, causes red tides in many coastal ecosystems. Although M. rubrum is known as a nontoxic species,[12] blooms of the ciliate can be potentially harmful to aquaculture industries.[13][14][1] M. rubrum photosynthesizes by sequestering the nucleus of its cryptophyte prey, in order to maintain stolen plastids and other organelles.[15] In this way, the genus Mesodinium plays an important role in linking cryptophycean prey and diverse predators in the aquatic microbial food web. For example, the dinoflagellates Dinophysis spp., which are a predator of M. rubrum and the source of their cryptophyte-derived plastids, have been frequently observed to precede or to coincide with high densities of M. rubrum.[16][17][18][19][1]

See also

[edit]

References

[edit]
  1. ^ a b c d Nishitani, G. and Yamaguchi, M. (2018) "Seasonal succession of ciliate Mesodinium spp. with red, green, or mixed plastids and their association with cryptophyte prey". Scientific reports, 8(1): 1–9. doi:10.1038/s41598-018-35629-4. Material was copied from this source, which is available under a Creative Commons Attribution 4.0 International License.
  2. ^ Leppanen, J. M. & Bruun, J. E. (1986) The role of pelagic ciliates including the autotrophic Mesodinium rubrum during the spring bloom of 1982 in the open northern Baltic proper. Ophelia 4, 147–157.
  3. ^ Sanders, R. W. (1995) Seasonal distributions of the photosynthesizing ciliates Laboea strobila and Myrionecta rubra (=Mesodinium rubrum) in an estuary of the Gulf of Maine. Aquat. Microb. Ecol. 9, 237–242.
  4. ^ Dajun Qiu; Liangmin Huang; Senjie Lin (10 October 2016). "Cryptophyte farming by symbiotic ciliate host detected in situ". Proceedings of the National Academy of Sciences of the United States of America. 113 (43): 12208–12213. Bibcode:2016PNAS..11312208Q. doi:10.1073/PNAS.1612483113. ISSN 0027-8424. PMC 5087057. PMID 27791006. Wikidata Q30826949.
  5. ^ Matthew D Johnson; Erica Lasek-Nesselquist; Holly V Moeller; et al. (1 February 2017). "Mesodinium rubrum: The symbiosis that wasn't". Proceedings of the National Academy of Sciences of the United States of America. 114 (7): E1040–E1042. Bibcode:2017PNAS..114.1040J. doi:10.1073/PNAS.1619247114. ISSN 0027-8424. PMC 5320990. PMID 28154148. Wikidata Q42320407.
  6. ^ Goh Nishitani; Satoshi Nagai; Katsuhisa Baba; et al. (May 2010). "High-level congruence of Myrionecta rubra prey and Dinophysis species plastid identities as revealed by genetic analyses of isolates from Japanese coastal waters". Applied and Environmental Microbiology. 76 (9): 2791–8. doi:10.1128/AEM.02566-09. ISSN 0099-2240. PMC 2863437. PMID 20305031. Wikidata Q24629387.
  7. ^ L Herfort; TD Peterson; LA McCue; et al. (4 January 2011). "Myrionecta rubra population genetic diversity and its cryptophyte chloroplast specificity in recurrent red tides in the Columbia River estuary". Aquatic Microbial Ecology. 62 (1): 85–97. doi:10.3354/AME01460. ISSN 0948-3055. Wikidata Q57272516.
  8. ^ Lydie Herfort; Katie Maxey; Ian Voorhees; Holly M Simon; Kolette Grobler; Tawnya D Peterson; Peter Zuber (7 April 2017). "Use of Highly Specific Molecular Markers Reveals Positive Correlation between Abundances of Mesodinium cf. major and Its Preferred Prey, Teleaulax amphioxeia, During Red Water Blooms in the Columbia River Estuary". Journal of Eukaryotic Microbiology. 64 (6): 740–755. doi:10.1111/JEU.12407. ISSN 1066-5234. PMID 28258655. Wikidata Q46343430.
  9. ^ Lydia Garcia-Cuetos; Øjvind Moestrup; Per J Hansen (18 June 2012). "Studies on the genus Mesodinium II. Ultrastructural and molecular investigations of five marine species help clarifying the taxonomy". Journal of Eukaryotic Microbiology. 59 (4): 374–400. doi:10.1111/J.1550-7408.2012.00630.X. ISSN 1066-5234. PMID 22708786. Wikidata Q34282405.
  10. ^ Ojvind Moestrup; Lydia Garcia-Cuetos; Per Juel Hansen; Tom Fenchel (1 January 2012). "Studies on the genus Mesodinium I: ultrastructure and description of Mesodinium chamaeleon n. sp., a benthic marine species with green or red chloroplasts". Journal of Eukaryotic Microbiology. 59 (1): 20–39. doi:10.1111/J.1550-7408.2011.00593.X. ISSN 1066-5234. PMID 22221919. Wikidata Q34030100.
  11. ^ Seung Won Nam; Woongghi Shin; Misun Kang; Wonho Yih; Myung Gil Park (21 August 2014). "Ultrastructure and molecular phylogeny of Mesodinium coatsi sp. nov., a benthic marine ciliate". Journal of Eukaryotic Microbiology. 62 (1): 102–120. doi:10.1111/JEU.12150. ISSN 1066-5234. PMID 25047232. Wikidata Q30837739.
  12. ^ Lindholm, T. (1985) Mesodinium rubrum–a unique photosynthetic ciliate. Adv. Aquat. Microbiol. 3, 1–48.
  13. ^ Hayes, G. C., Purdie, D. A. & Williams, J. A. (1989) The distribution of ichthyoplankton in Southampton Water in response to low oxygen levels produced by a Mesodinium rubrum bloom. J. Fish Biol. 34, 811–813.
  14. ^ Liu, H. et al. (2012) Potential risk of Mesodinium rubrum bloom in the aquaculture area of Dapeng’ao cove, China: diurnal changes in the ciliate community structure in the surface water. Oceanologia 54, 109–117.
  15. ^ Matthew D Johnson; David Oldach; Charles F. Delwiche; Diane K Stoecker (1 January 2007). "Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra". Nature. 445 (7126): 426–428. doi:10.1038/NATURE05496. ISSN 1476-4687. PMID 17251979. Wikidata Q34606048.
  16. ^ Mouritsen, L. T. & Richardson, K. (2003) Vertical microscale patchiness in nano- and microplankton distributions in a stratifed estuary. J. Plankton Res. 25, 783–797.
  17. ^ Conny O Sjöqvist; Tore J Lindholm (13 May 2011). "Natural co-occurrence of Dinophysis acuminata (Dinoflagellata) and Mesodinium rubrum (Ciliophora) in thin layers in a coastal inlet". Journal of Eukaryotic Microbiology. 58 (4): 365–372. doi:10.1111/J.1550-7408.2011.00559.X. ISSN 1066-5234. PMID 21569163. Wikidata Q51598919.
  18. ^ Lips, U. & Lips, I. (2014) Bimodal distribution patterns of motile phytoplankton in relation to physical processes and stratification (Gulf of Finland, Baltic Sea). Deep-Sea Res. II. 101, 107–119.
  19. ^ L. Velo-Suárez; S. González-Gil; Y. Pazos; B. Reguera (March 2014). "The growth season of Dinophysis acuminata in an upwelling system embayment: A conceptual model based on in situ measurements". Deep-Sea Research. Part 2: Topical Studies in Oceanography. 101: 141–151. doi:10.1016/J.DSR2.2013.03.033. ISSN 0967-0645. Wikidata Q60507600.