Lutetium–yttrium oxyorthosilicate
Identifiers | |
---|---|
PubChem CID
|
|
Properties | |
Lu2(1-x)Y2xSiO5 | |
Molar mass | 988.21 g/mol[1] |
Density | Between 4.44 g/cm3 [2] and 7.4 g/cm3,[3] depending on Y/Lu ratio |
Melting point | 2,047 °C (3,717 °F; 2,320 K) |
Refractive index (nD)
|
1.82 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Lutetium–yttrium oxyorthosilicate, also known as LYSO, is an inorganic chemical compound with main use as a scintillator crystal for gamma radiation detection.[4] Its chemical formula is Lu2(1-x)Y2xSiO5. The percentage of yttrium varies considerably, with values in the literature ranging from 5% to 70%.[5] It is commonly used to build screens and electromagnetic calorimeters in particle physics. LYSO crystals have the advantages of high light output and density, quick decay time, excellent energy resolution.[6] The crystals are often grown in boules using the Czochralski process, and cutting or polishing can be challenging because LYSO is brittle and hard.[7]
Intrinsic Radiation in Gamma Spectroscopy
[edit]LYSO scintillators contain naturally occurring 176Lu, a radioactive isotope of lutetium that undergoes beta decay, emitting gamma radiation at 88 keV, 202 keV, and 307 keV. This intrinsic activity introduces background signals that can interfere with low-energy gamma detection, making LYSO less suitable for applications requiring ultra-low background noise. However, the intrinsic peaks can be used for energy calibration and gain stabilization, and advanced signal processing techniques—such as background subtraction, energy windowing, or coincidence timing discrimination—can help mitigate these effects, allowing LYSO to remain a viable choice for mid-to-high-energy gamma[8].
References
[edit]- ^ "Lutetium orthosilicate". PubChem. National Center for Biotechnology Information. Retrieved 2024-08-02.
- ^ "Yttrium Orthosilicate - Y2SiO5 | Scientific Materials | YSO LASER Materials".
- ^ Daghighian, F.; Shenderov, P.; Pentlow, K.S.; Graham, M.C.; Eshaghian, B.; Melcher, C.L.; Schweitzer, J.S. (August 1993). "Evaluation of cerium doped lutetium oxyorthosilicate (LSO) scintillation crystals for PET" (PDF). IEEE Transactions on Nuclear Science. 40 (4): 1045–1047. Bibcode:1993ITNS...40.1045D. doi:10.1109/23.256710. S2CID 28011497. Retrieved 18 November 2022.
- ^ Lowdon, Matthew; Martin, Peter G.; Hubbard, M.W.J.; Taggart, M.P.; Connor, Dean T.; Verbelen, Yannick; Sellins, P.J.; Scott, Thomas B. (2019). "Evaluation of Scintillator Detection Materials for Application within Airborne Environmental Radiation Monitoring". Sensors. 18 (8): 13. Bibcode:2019Senso..19.3828L. doi:10.3390/s19183828. PMC 6767284. PMID 31487922.
- ^ Radiation Detection and Measurement, p. 249, at Google Books
- ^ Chen, Jianming; Mao, Rihua; Zhang, Liyuan; Zhu, Ren-Yuan (2007). "Large Size LSO and LYSO Crystals for Future High Energy Physics Experiments" (PDF). IEEE Transactions on Nuclear Science. 4 (3): 718–724. Bibcode:2007ITNS...54..718C. doi:10.1109/TNS.2007.897823. S2CID 6606410.
- ^ Shang, Xi; Xie, Qiangqiang; Xie, Siwei; Yu, Xin; Xu, Jianfeng; Peng, Qiyu (2021). "A Novel Portable Gamma Radiation Sensor Based on a Monolithic Lutetium-Yttrium Oxyorthosilicate Ring". Sensors. 21 (10): 16. Bibcode:2021Senso..21.3376Z. doi:10.3390/s21103376. PMC 8150370. PMID 34066224.
- ^ Alva-Sánchez, H.; Zepeda-Barrios, A.; Díaz-Martínez, V. D.; Murrieta-Rodríguez, T.; Martínez-Dávalos, A.; Rodríguez-Villafuerte, M. (23 November 2018). "Understanding the intrinsic radioactivity energy spectrum from 176Lu in LYSO/LSO scintillation crystals". Scientific Reports. 8 (1): 17310. doi:10.1038/s41598-018-35684-x. ISSN 2045-2322.