From Wikipedia, the free encyclopedia
In mathematics, Dirichlet integrals play an important role in distribution theory. We can see the Dirichlet integral in terms of distributions.
One of those is the improper integral of the sinc function over the positive real line,
Let be a continuous function satisfying the -periodic assumption , and , for . If the integral is taken to be an improper Riemann integral, we have Lobachevsky's Dirichlet integral formula
Moreover, we have the following identity as an extension of the Lobachevsky Dirichlet integral formula[1]
As an application, take . Then
- Hardy, G. H. (1909). "The Integral ". The Mathematical Gazette. 5 (80): 98–103. JSTOR 3602798.
- Dixon, Alfred Cardew (1912). "Proof That ". The Mathematical Gazette. 6 (96): 223–224. JSTOR 3604314.