List of graphs by edges and vertices
Appearance
This sortable list points to the articles describing various individual (finite) graphs.[1] The columns 'vertices', 'edges', 'radius', 'diameter', 'girth', 'P' (whether the graph is planar), χ (chromatic number) and χ' (chromatic index) are also sortable, allowing to search for a parameter or another.
Wikimedia Commons has media related to Graphs by number of vertices.
See also Graph theory for the general theory, as well as Gallery of named graphs for a list with illustrations.
List
[edit]name | vertices | edges | radius | diam. | girth | P | χ | χ' |
---|---|---|---|---|---|---|---|---|
120-cell | 600 | 1200 | 15 | 15 | 5 | F | 3 | 4 |
Balaban 3-10-cage | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 |
Balaban 3-11-cage | 112 | 168 | 6 | 8 | 11 | F | 3 | 3 |
Barnette–Bosák–Lederberg graph | 38 | 57 | 5 | 9 | 4 | T | 3 | 3 |
Bidiakis cube | 12 | 18 | 3 | 3 | 4 | T | 3 | 3 |
Biggs–Smith graph | 102 | 153 | 7 | 7 | 9 | F | 3 | 3 |
Blanuša snarks | 18 | 27 | 4 | 4 | 5 | F | 3 | 4 |
Brinkmann graph | 21 | 42 | 3 | 3 | 5 | T | 4 | 5 |
Brouwer–Haemers graph | 81 | 810 | 2 | 2 | 3 | F | 7 | 21 |
Bull graph | 5 | 5 | 2 | 3 | 3 | T | 3 | 3 |
Butterfly graph | 5 | 6 | 1 | 2 | 3 | T | 3 | 4 |
Cameron graph | 231 | 3465 | 2 | 2 | 3 | F | N/A | N/A |
Chang graphs | 28 | 168 | 2 | 2 | 3 | F | 7 | 12 |
Chvátal graph | 12 | 24 | 2 | 2 | 4 | F | 4 | 4 |
Clebsch graph | 16 | 40 | 2 | 2 | 4 | F | 4 | 5 |
Coxeter graph | 28 | 42 | 4 | 4 | 7 | F | 3 | 3 |
Cubical graph | 8 | 12 | 3 | 3 | 4 | T | 2 | 3 |
Cuboctahedral graph | 12 | 24 | 3 | 3 | 3 | T | 3 | 4 |
Dejter graph | 112 | 336 | 7 | 7 | 6 | F | 2 | 6 |
Desargues graph | 20 | 30 | 5 | 5 | 6 | F | 2 | 3 |
Descartes snark | 210 | 315 | N/A | N/A | 5 | N/A | N/A | 4 |
Diamond graph | 4 | 5 | 1 | 2 | 3 | T | 3 | 3 |
Dodecahedral graph (20-fullerene) | 20 | 30 | 5 | 5 | 5 | T | 3 | 3 |
Double-star snark | 30 | 45 | 4 | 4 | 6 | F | 3 | 4 |
Dürer graph | 12 | 18 | 3 | 4 | 3 | T | 3 | 3 |
Dyck graph | 32 | 48 | 5 | 5 | 6 | F | 2 | 3 |
Ellingham–Horton 54-graph | 54 | 81 | 9 | 10 | 6 | F | 2 | 3 |
Ellingham–Horton 78-graph | 78 | 117 | 7 | 13 | 6 | F | 2 | 3 |
Errera graph | 17 | 45 | 3 | 4 | 3 | T | 4 | 6 |
F26A graph | 26 | 39 | 5 | 5 | 6 | F | 2 | 3 |
Flower snark J(5) | 20 | 30 | 4 | 4 | 5 | F | 3 | 4 |
Folkman graph | 20 | 40 | 3 | 4 | 4 | F | 2 | 4 |
Foster 5-5-cage | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 |
Foster graph | 90 | 135 | 8 | 8 | 10 | F | 2 | 3 |
Franklin graph | 12 | 18 | 3 | 3 | 4 | F | 2 | 3 |
Fritsch graph | 9 | 21 | 2 | 2 | 3 | T | 4 | 6 |
Frucht graph | 12 | 18 | 3 | 4 | 3 | T | 3 | 3 |
Gewirtz graph | 56 | 280 | 2 | 2 | 4 | F | 4 | 10 |
26-fullerene graph (26-fullerene) | 26 | 39 | 5 | 6 | 5 | T | 3 | 3 |
Goldner–Harary graph | 11 | 27 | 2 | 2 | 3 | T | 4 | 8 |
Golomb graph | 10 | 18 | 2 | 3 | 3 | T | 4 | 6 |
Gosset graph | 56 | 756 | 3 | 3 | 3 | F | 14 | 27 |
Gray graph | 54 | 81 | 6 | 6 | 8 | F | 2 | 3 |
Grötzsch graph | 11 | 20 | 2 | 2 | 4 | F | 4 | 5 |
Hall–Janko graph | 100 | 1800 | 2 | 2 | 3 | F | 10 | 36 |
Harborth graph | 52 | 104 | 6 | 9 | 3 | T | 3 | 4 |
Harries graph | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 |
Harries–Wong graph | 70 | 105 | 6 | 6 | 10 | F | 2 | 3 |
Heawood 3-6-cage graph | 14 | 21 | 3 | 3 | 6 | F | 2 | 3 |
Herschel graph | 11 | 18 | 3 | 4 | 4 | T | 2 | 4 |
Hexagonal truncated trapezohedron (24-fullerene) | 24 | 36 | 5 | 5 | 5 | T | 3 | 3 |
Higman–Sims graph | 100 | 1100 | 2 | 2 | 4 | F | 6 | 22 |
Hoffman graph | 16 | 32 | 3 | 4 | 4 | F | 2 | 4 |
Hoffman–Singleton 7-5-cage graph | 50 | 175 | 2 | 2 | 5 | F | 4 | 7 |
Holt graph | 27 | 54 | 3 | 3 | 5 | F | 3 | 5 |
Horton graph | 96 | 144 | 10 | 10 | 6 | F | 2 | 3 |
Icosahedral graph | 12 | 30 | 3 | 3 | 3 | T | 4 | 5 |
Icosidodecahedral graph | 30 | 60 | 5 | 5 | 3 | T | 3 | 4 |
Iofinova-Ivanov-110-vertex graph | 110 | 165 | 7 | 7 | 10 | F | 2 | 3 |
Kittell graph | 23 | 63 | 3 | 4 | 3 | T | 4 | 7 |
Klein graph (cubic) | 56 | 84 | 6 | 6 | 7 | F | 3 | 3 |
Klein graph (7-valent) | 24 | 84 | 3 | 3 | 3 | F | 4 | 7 |
Krackhardt kite graph | 10 | 18 | 2 | 4 | 3 | T | 4 | 6 |
Livingstone graph | 266 | 1463 | 4 | 4 | 5 | F | N/A | 11 |
Ljubljana graph | 112 | 168 | 7 | 8 | 10 | F | 2 | 3 |
Loupekine snark (first) | 22 | 33 | 3 | 4 | 5 | F | 3 | 4 |
Loupekine snark (second) | 22 | 33 | 3 | 4 | 5 | F | 3 | 4 |
Markström graph | 24 | 36 | 5 | 6 | 3 | T | 3 | 3 |
McGee graph | 24 | 36 | 4 | 4 | 7 | F | 3 | 3 |
McLaughlin graph | 275 | 15400 | 2 | 2 | 3 | F | N/A | 113 |
Meredith graph | 70 | 140 | 7 | 8 | 4 | F | 3 | 5 |
Meringer 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 3 | 5 |
Möbius–Kantor graph | 16 | 24 | 4 | 4 | 6 | F | 2 | 3 |
Moser spindle | 7 | 11 | 2 | 2 | 3 | T | 4 | 4 |
Nauru graph | 24 | 36 | 4 | 4 | 6 | F | 2 | 3 |
Null graph | 0 | 0 | 0 | 0 | N/A | T | 0 | 0 |
Octahedral graph | 6 | 12 | 2 | 2 | 3 | T | 3 | 4 |
Paley graph of order 13 | 13 | 39 | 2 | 2 | 3 | F | 5 | 7 |
Pappus graph | 18 | 27 | 4 | 4 | 6 | F | 2 | 3 |
Perkel graph | 57 | 171 | 3 | 3 | 5 | F | 3 | 7 |
Petersen 3-5-cage graph | 10 | 15 | 2 | 2 | 5 | F | 3 | 4 |
Poussin graph | 15 | 39 | 3 | 3 | 3 | T | 4 | 6 |
Rhombicosidodecahedral graph | 60 | 120 | 8 | 8 | 3 | T | 3 | 4 |
Rhombicuboctahedral graph | 24 | 48 | 5 | 5 | 3 | T | 3 | 4 |
Robertson 4-5-cage graph | 19 | 38 | 3 | 3 | 5 | F | 3 | 5 |
Robertson–Wegner 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 |
Schläfli graph | 27 | 216 | 2 | 2 | 3 | F | 9 | 17 |
Shrikhande graph | 16 | 48 | 2 | 2 | 3 | F | 4 | 6 |
Snub cubical graph | 24 | 60 | 4 | 4 | 3 | T | 3 | 5 |
Snub dodecahedral graph | 60 | 150 | 7 | 7 | 3 | T | 4 | 5 |
Sousselier graph | 16 | 27 | 2 | 3 | 5 | F | 3 | 5 |
Sylvester graph | 36 | 90 | 3 | 3 | 5 | F | 4 | 5 |
Szekeres snark | 50 | 75 | 6 | 7 | 5 | F | 3 | 4 |
Tetrahedral graph | 4 | 6 | 1 | 1 | 3 | T | 4 | 3 |
Thomsen graph | 6 | 9 | 2 | 2 | 4 | F | 2 | 3 |
Tietze's graph | 12 | 18 | 3 | 3 | 3 | F | 3 | 4 |
Triangle graph | 3 | 3 | 1 | 1 | 3 | T | 3 | 3 |
Truncated cubical graph | 24 | 36 | 6 | 6 | 3 | T | 3 | 3 |
Truncated cuboctahedral graph | 48 | 72 | 9 | 9 | 4 | T | 2 | 3 |
Truncated dodecahedral graph | 60 | 90 | 10 | 10 | 3 | T | 3 | 3 |
Truncated icosahedral graph (60-fullerene) | 60 | 90 | 9 | 9 | 5 | T | 3 | 3 |
Truncated icosidodecahedral graph | 120 | 180 | 15 | 15 | 4 | T | 2 | 3 |
Truncated octahedral graph | 24 | 36 | 6 | 6 | 4 | T | 2 | 3 |
Truncated tetrahedral graph | 12 | 18 | 3 | 3 | 3 | T | 3 | 3 |
Tutte 3-12-cage | 126 | 189 | 6 | 6 | 12 | F | 2 | 3 |
Tutte graph | 46 | 69 | 5 | 8 | 4 | T | 3 | 3 |
Tutte 3-8-cage graph | 30 | 45 | 4 | 4 | 8 | F | 2 | 3 |
Wagner graph | 8 | 12 | 2 | 2 | 4 | F | 3 | 3 |
Watkins snark | 50 | 75 | 7 | 7 | 5 | F | 3 | 4 |
Wells graph | 32 | 80 | 4 | 4 | 5 | F | 4 | 5 |
Wiener–Araya graph | 42 | 67 | 5 | 7 | 4 | T | 3 | 4 |
Wong 5-5-cage graph | 30 | 75 | 3 | 3 | 5 | F | 4 | 5 |
References
[edit]- ^ R. Diestel, Graph Theory, p.8. 3rd Edition, Springer-Verlag, 2005