Jump to content

Linked set

From Wikipedia, the free encyclopedia

In mathematics, an upwards linked set A is a subset of a partially ordered set, P, in which any two of elements A have a common upper bound in P. Similarly, every pair of elements of a downwards linked set has a lower bound. Every centered set is linked, which includes, in particular, every directed set.

References

[edit]
  • Fremlin, David H. (1984). Consequences of Martin's axiom. Cambridge tracts in mathematics, no. 84. Cambridge: Cambridge University Press. ISBN 0-521-25091-9.