From Wikipedia, the free encyclopedia
Polynomial function in three variables
The Källén function , also known as triangle function , is a polynomial function in three variables, which appears in geometry and particle physics. In the latter field it is usually denoted by the symbol
λ
{\displaystyle \lambda }
. It is named after the theoretical physicist Gunnar Källén , who introduced it as a short-hand in his textbook Elementary Particle Physics .[ 1]
The function is given by a quadratic polynomial in three variables
λ
(
x
,
y
,
z
)
≡
x
2
+
y
2
+
z
2
−
2
x
y
−
2
y
z
−
2
z
x
.
{\displaystyle \lambda (x,y,z)\equiv x^{2}+y^{2}+z^{2}-2xy-2yz-2zx.}
In geometry the function describes the area
A
{\displaystyle A}
of a triangle with side lengths
a
,
b
,
c
{\displaystyle a,b,c}
:
A
=
1
4
−
λ
(
a
2
,
b
2
,
c
2
)
.
{\displaystyle A={\frac {1}{4}}{\sqrt {-\lambda (a^{2},b^{2},c^{2})}}.}
See also Heron's formula .
The function appears naturally in the kinematics of relativistic particles, e.g. when expressing the energy and momentum components in the center of mass frame by Mandelstam variables .[ 2]
The function is (obviously) symmetric in permutations of its arguments, as well as independent of a common sign flip of its arguments:
λ
(
−
x
,
−
y
,
−
z
)
=
λ
(
x
,
y
,
z
)
.
{\displaystyle \lambda (-x,-y,-z)=\lambda (x,y,z).}
If
y
,
z
>
0
{\displaystyle y,z>0}
the polynomial factorizes into two factors
λ
(
x
,
y
,
z
)
=
(
x
−
(
y
+
z
)
2
)
(
x
−
(
y
−
z
)
2
)
.
{\displaystyle \lambda (x,y,z)=(x-({\sqrt {y}}+{\sqrt {z}})^{2})(x-({\sqrt {y}}-{\sqrt {z}})^{2}).}
If
x
,
y
,
z
>
0
{\displaystyle x,y,z>0}
the polynomial factorizes into four factors
λ
(
x
,
y
,
z
)
=
−
(
x
+
y
+
z
)
(
−
x
+
y
+
z
)
(
x
−
y
+
z
)
(
x
+
y
−
z
)
.
{\displaystyle \lambda (x,y,z)=-({\sqrt {x}}+{\sqrt {y}}+{\sqrt {z}})(-{\sqrt {x}}+{\sqrt {y}}+{\sqrt {z}})({\sqrt {x}}-{\sqrt {y}}+{\sqrt {z}})({\sqrt {x}}+{\sqrt {y}}-{\sqrt {z}}).}
Its most condensed form is
λ
(
x
,
y
,
z
)
=
(
x
−
y
−
z
)
2
−
4
y
z
.
{\displaystyle \lambda (x,y,z)=(x-y-z)^{2}-4yz.}
Interesting special cases are[ 2] : eqns. (II.6.8–9)
λ
(
x
,
y
,
y
)
=
x
(
x
−
4
y
)
,
{\displaystyle \lambda (x,y,y)=x(x-4y)\,,}
λ
(
x
,
y
,
0
)
=
(
x
−
y
)
2
.
{\displaystyle \lambda (x,y,0)=(x-y)^{2}\,.}
^ G. Källén, Elementary Particle Physics , (Addison-Wesley, 1964)
^ a b E. Byckling, K. Kajantie, Particle Kinematics , (John Wiley & Sons Ltd, 1973)