Jump to content

Hydrogen purification

From Wikipedia, the free encyclopedia

Hydrogen purification is any technology used to purify hydrogen. The impurities in hydrogen gas depend on the source of the H2, e.g., petroleum, coal, electrolysis, etc. The required purity is determined by the application of the hydrogen gas. For example, ultra-high purified hydrogen is needed for applications like proton exchange membrane fuel cells.[1]

Purification technologies

[edit]

Low temperature methods

[edit]

The default large-scale purification of H2 produced in oil refineries exploits its very low boiling point of −253 °C. Most impurities have boiling points well above this temperature. Low temperature methods can be complemented by scrubbing to remove particular impurities.[1]

Palladium membrane hydrogen purifiers

[edit]

Hydrogen can be purified by passing through a membrane composed of palladium and silver. Permeability of the former to hydrogen was discovered back in the 1860s.[2] An alloy with a ca. 3:1 ratio for Pd:Ag is more structural robust than pure Pd, which is the active component that allows the selective diffusion of H2 through it. Diffusion is faster near 300 °C. This method has been used for purification of hydrogen on a laboratory scale, but not in industry. Silver-palladium membranes are unstable toward alkenes and sulfur-containing compounds.[1]

Dense thin-metal membrane purifiers are compact, relatively inexpensive and simple to use.[3][4]

Pressure swing adsorption

[edit]

Pressure swing adsorption is used for the removal of carbon dioxide (CO2) as the final step in the large-scale commercial synthesis of hydrogen. It can also remove methane, carbon monoxide, nitrogen, moisture and in some cases, argon, from hydrogen.

Applications

[edit]

Metalorganic vapour phase epitaxy

[edit]

Hydrogen purifiers are used in metalorganic vapour phase epitaxy reactors for LED production.[5]

PEM fuel cells

[edit]

Fuel cell electric vehicles commonly use polymer electrolyte membrane fuel cells (PEMFC) that are susceptible to a range of impurities. Impurities impact PEMFC using a range of mechanisms, these may include poisoning the anode hydrogen oxidation reaction catalysts, reducing the ionic conductivity of the ionomer and membrane, altering wetting behaviour of components or blocking porosity in diffusion media. The impact of some impurities like carbon monoxide, formic acid, or formaldehyde is reversible with PEMFC performance recovering once the supply of impurity is removed. Other impurities, for example sulphurous compounds, may cause irreversible degradation.[6] The permissible limits of hydrogen impurities are shown below.

Fuel Quality Specification For Gasseous Hydrogen Supplied to PEMFC Road Vehicles [7]
Maximum Permissible Concentration / μmol mol−1
Total non-hydrogen gasses 300
Water 5
Total Hydrocarbons Except Methane [Carbon atom basis] 2
Methane 100
Oxygen 5
Helium 300
Nitrogen 300
Argon 300
Carbon Dioxide 2
Carbon Monoxide 0.2
Total Sulphur Compounds [Sulphur atom basis] 0.004
Formaldehyde 0.2
Formic Acid 0.2
Ammonia 0.1
Halogenated Compounds [Halogen ion basis] 0.05
Maximum Particulate Concentration 1 mg kg−1

Efforts to assess the compliance of hydrogen supplied by hydrogen refuelling stations against the ISO-14687 standard have been performed.[8][9][10] While the hydrogen was generally found to be 'good'[8] violations of the standard have been reported, most frequently for nitrogen, water and oxygen.

Combustion engines and appliances

[edit]

Combustion applications are generally more tolerant of hydrogen impurities than PEFMC, as such the ISO-14687 standard for permissible impurities is less strict.[11] This standard has itself been criticised with revisions proposed to make it more lenient and therefore suitable for hydrogen distributed through a repurposed gas network.[12]

Fuel Quality Specification For Gaseous Hydrogen Supplied to Combustion Engines and Appliances [13]
Impurity Maximum Permissible Concentration / μmol mol−1
Total non-hydrogen gasses 20 000
Water Non-condensing
Total Hydrocarbons [Carbon atom basis] 100
Carbon Monoxide 1
Sulphur [Sulphur atom basis] 2
Combined water, oxygen, nitrogen, argon 19 000
Permanent Particulates Shall not contain an amount sufficient to cause damage.

Sources of impurities

[edit]

The presence of impurities in hydrogen depends on the feedstock and the production process. Hydrogen produced by electrolysis of water may routinely include trace oxygen and water. Hydrogen produced by reforming of hydrocarbons contains carbon dioxide and carbon monoxide as well as sulphur compounds.[12] Some impurities may be added deliberately, for example odorants to aid detection of gas leaks.[14]

Methods for analysis

[edit]

As the permissible concentrations for many impurities are very low this sets stringent demands on the sensitivity of the analytical methods. Moreover, the high reactivity of some impurities requires use of a properly passivated sampling and analytical systems.[15] Sampling of hydrogen of is challenging and care must be taken to ensure that impurities are not introduced to the sample and that impurities do not absorb on or react within the sampling equipment, there are currently different methods for sampling but rely on filling a gas cylinder from the refuelling nozzle of a refuelling station.[16] Efforts are underway to standardise and compare sampling strategies.[17][18] A combination of different instruments is needed to assess hydrogen samples for all of the components listed in ISO 14687-2.[19] Techniques suitable for individual impurities are indicated in the table below.

Example Analytical Methods for Asessing The Concentration of Impurities in Hydrogen[20][21]
Impurity Possible Analytical Methods Detection Limits
Total non-hydrogen gasses
Water Quartz crystal microbalance

or CRDS

1.3 or 0.030
Total Hydrocarbons Except Methane [Carbon atom basis] GC-Methaniser-FID 0.1
Methane GC-Methaniser-FID, GC-EPD 0.1
Oxygen GC-PDHID, GC-EPD 0.3
Helium GC-TCD 10
Nitrogen GC-PDHID, GC-EPD 1
Argon GC-PDHID, GC-EPD 0.3
Carbon Dioxide GC-Methaniser-FID, GC-EPD 0.02
Carbon Monoxide GC-Methaniser-FID, GC-EPD 0.02
Total Sulphur Compounds [Sulphur atom basis] GC-SCD, GC-EPD 0.001
Formaldehyde GC-Methaniser-FID 0.1
Formic Acid FTIR 0.2
Ammonia GC-MS or UV-visible spectroscopy or FTIR 1 or 0.03 or 0.1
Halogenated Compounds (Halogen Ion Equivalent) TD-GC-MS 0.016

Techniques such as electrochemical sensors [22][23] and mass spectrometry.[24]

See also

[edit]

References

[edit]
  1. ^ a b c Häussinger, Peter; Lohmüller, Reiner; Watson, Allan M. (2011). "Hydrogen, 3. Purification". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.o13_o04. ISBN 978-3-527-30385-4.
  2. ^ Sammells, Anthony F.; Mundschau, Michael V. (2006-12-13). Nonporous Inorganic Membranes: For Chemical Processing. John Wiley & Sons. ISBN 978-3-527-60858-4.
  3. ^ Hydrogen purification membranes
  4. ^ Dense metal membranes for hydrogen purifying
  5. ^ "Hydrogen purifiers proving vital to LED production". III-Vs Review. 19 (5): 19. June 2006. doi:10.1016/S0961-1290(06)71698-2.
  6. ^ X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z.-S. Liu, H. Wang and J. Shen (2007). "A review of PEM hydrogen fuel cell contamination:Impacts, mechanisms, and mitigation". Journal of Power Sources. 165 (2): 739–756. Bibcode:2007JPS...165..739C. doi:10.1016/j.jpowsour.2006.12.012. S2CID 95246225.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  7. ^ "ISO 14687:2019". Retrieved 2021-10-18.
  8. ^ a b Aarhaug, Thor Anders; Kjos, Ole; Bacquart, Thomas; Valter, Vladimir; Optenhostert, Thomas (2021-08-18). "Assessment of hydrogen quality dispensed for hydrogen refuelling stations in Europe". International Journal of Hydrogen Energy. HYDROGEN ENERGY SYSTEMS. 46 (57): 29501–29511. Bibcode:2021IJHE...4629501A. doi:10.1016/j.ijhydene.2020.11.163. hdl:11250/3025287. ISSN 0360-3199. S2CID 230535934.
  9. ^ Aarhaug, Thor A.; Kjos, Ole S.; Ferber, Alain; Hsu, Jong Pyong; Bacquart, Thomas (2020). "Mapping of Hydrogen Fuel Quality in Europe". Frontiers in Energy Research. 8: 307. doi:10.3389/fenrg.2020.585334. hdl:11250/2770289. ISSN 2296-598X.
  10. ^ "HYDRAITE public report D3.1 | HYDRAITE". Retrieved 2021-10-18.
  11. ^ "ISO 14687:2019". Retrieved 2021-10-18.
  12. ^ a b "WP2 Report Hydrogen Purity". Hy4Heat. Retrieved 2021-10-18.
  13. ^ "ISO 14687:2019". Retrieved 2021-10-18.
  14. ^ "Hydrogen Odorant and Leak Detection Project Closure Report" (PDF).
  15. ^ Bacquart, Thomas; Moore, Niamh; Hart, Nick; Morris, Abigail; Aarhaug, Thor A.; Kjos, Ole; Aupretre, Fabien; Colas, Thibault; Haloua, Frederique; Gozlan, Bruno; Murugan, Arul (2020-02-14). "Hydrogen quality sampling at the hydrogen refuelling station – lessons learnt on sampling at the production and at the nozzle". International Journal of Hydrogen Energy. 22nd World Hydrogen Energy Conference. 45 (8): 5565–5576. Bibcode:2020IJHE...45.5565B. doi:10.1016/j.ijhydene.2019.10.178. hdl:11250/2689927. ISSN 0360-3199. S2CID 213820032.
  16. ^ Arrhenius, Karine; Aarhaug, Thor; Bacquart, Thomas; Morris, Abigail; Bartlett, Sam; Wagner, Lisa; Blondeel, Claire; Gozlan, Bruno; Lescornez, Yann; Chramosta, Nathalie; Spitta, Christian (2021-10-11). "Strategies for the sampling of hydrogen at refuelling stations for purity assessment". International Journal of Hydrogen Energy. 46 (70): 34839–34853. Bibcode:2021IJHE...4634839A. doi:10.1016/j.ijhydene.2021.08.043. hdl:11250/3010363. ISSN 0360-3199. S2CID 239636011.
  17. ^ Practice for Sampling of High Pressure Hydrogen and Related Fuel Cell Feed Gases, ASTM International, doi:10.1520/d7606-17, retrieved 2021-11-01
  18. ^ DIN ISO/TS 22002-3:2017-09, retrieved 2021-11-01
  19. ^ Murugan, Arul; Brown, Andrew S. (2015-03-22). "Review of purity analysis methods for performing quality assurance of fuel cell hydrogen". International Journal of Hydrogen Energy. 40 (11): 4219–4233. Bibcode:2015IJHE...40.4219M. doi:10.1016/j.ijhydene.2015.01.041. ISSN 0360-3199.
  20. ^ "Hydrogen purity". NPLWebsite. Retrieved 2021-10-18.
  21. ^ Bacquart, Thomas; Arrhenius, Karine; Persijn, Stefan; Rojo, Andrés; Auprêtre, Fabien; Gozlan, Bruno; Moore, Niamh; Morris, Abigail; Fischer, Andreas; Murugan, Arul; Bartlett, Sam (2019-12-31). "Hydrogen fuel quality from two main production processes: Steam methane reforming and proton exchange membrane water electrolysis". Journal of Power Sources. 444: 227170. Bibcode:2019JPS...44427170B. doi:10.1016/j.jpowsour.2019.227170. ISSN 0378-7753. S2CID 208754564.
  22. ^ Mukundan, Rangachary (2020). "Development of an Electrochemical Hydrogen Contaminant Detector". Journal of the Electrochemical Society. 167 (14): 147507. Bibcode:2020JElS..167n7507M. doi:10.1149/1945-7111/abc43a. S2CID 226341724.
  23. ^ Noda, Z.; Hirata, K.; Hayashi, A.; Takahashi, T.; Nakazato, N.; Saigusa, K.; Seo, A.; Suzuki, K.; Ariura, S.; Shinkai, H.; Sasaki, K. (2017-02-02). "Hydrogen pump-type impurity sensors for hydrogen fuels". International Journal of Hydrogen Energy. 42 (5): 3281–3293. Bibcode:2017IJHE...42.3281N. doi:10.1016/j.ijhydene.2016.12.066. ISSN 0360-3199.
  24. ^ "HydrogenSense". www.vandf.com. Retrieved 2021-10-27.[permanent dead link]
[edit]