Glossary of number theory
Appearance
This is a glossary of concepts and results in number theory, a field of mathematics. Concepts and results in arithmetic geometry and diophantine geometry can be found in Glossary of arithmetic and diophantine geometry.
See also List of number theory topics.
A
[edit]- abc
- abc conjecture
- adele
- Adele ring
- algebraic number
- Algebraic number
- algebraic number field
- See number field.
- algebraic number theory
- Algebraic number theory
- analytic number theory
- Analytic number theory
- Artin
- The Artin conjecture says Artin's L function is entire (holomorphic on the entire complex plane).
- automorphic form
- An automorphic form is a certain holomorphic function.
B
[edit]- Bézout's identity
- Bézout's identity, also called Bézout's lemma, states that if d is the greatest common divisor of two integers a and b, then there exists integers x and y such that ax + by = d, and in fact the integers of the form as + bt are exactly the multiples of d.
- Brocard
- Brocard's problem
C
[edit]- Chinese remainder theorem
- Chinese remainder theorem
- class field
- The class field theory concerns abelian extensions of number fields.
- class number
- 1. The class number of a number field is the cardinality of the ideal class group of the field.
- 2. In group theory, the class number is the number of conjugacy classes of a group.
- 3. Class number is the number of equivalence classes of binary quadratic forms of a given discriminant.
- 4. The class number problem.
- conductor
- Conductor (class field theory)
- coprime
- Two integers are coprime (also called relatively prime) if the only positive integer that divides them both is 1.
D
[edit]- Dedekind
- Dedekind zeta function.
- Diophantine equation
- Diophantine equation
- Dirichlet
- 1. Dirichlet's theorem on arithmetic progressions
- 2. Dirichlet character
- 3. Dirichlet's unit theorem.
- Disquisitiones Arithmeticae
- Disquisitiones Arithmeticae is a book by Carl Friedrich Gauss.
- distribution
- A distribution in number theory is a generalization/variant of a distribution in analysis.
- divisor
- A divisor or factor of an integer n is an integer m such that there exists an integer k satisfying n = mk. Divisors can be defined in exactly the same way for polynomials or for elements of a commutative ring.
E
[edit]- Eisenstein
- Eisenstein series
- elliptic curve
- Elliptic curve
- Erdős
- Erdős–Kac theorem
- Euclid's lemma
- Euclid's lemma states that if a prime p divides the product of two integers ab, then p must divide at least one of a or b.
- Euler's criterion
- Euler's criterion
- Euler's theorem
- Euler's theorem states that if n and a are coprime positive integers, then aφ(n) is congruent to 1 mod n. Euler's theorem generalizes Fermat's little theorem.
- Euler's totient function
- For a positive integer n, Euler's totient function of n, denoted φ(n), is the number of integers coprime to n between 1 and n inclusive. For example, φ(4) = 2 and φ(p) = p - 1 for any prime p.
F
[edit]- factor
- See the entry for divisor.
- factorization
- Factorization is the process of splitting a mathematical object, often integers or polynomials, into a product of factors.
- Fermat's last theorem
- Fermat's last theorem, one of the most famous and difficult to prove theorems in number theory, states that for any integer n > 2, the equation an + bn = cn has no positive integer solutions.
- Fermat's little theorem
- Fermat's little theorem
- fundamental theorem of arithmetic
- The fundamental theorem of arithmetic states that every integer greater than 1 can be written uniquely (up to reordering) as a product of primes.
G
[edit]- global field
- Global field
- Goldbach's conjecture
- Goldbach's conjecture is a conjecture that states that every even natural number greater than 2 is the sum of two primes.
- greatest common divisor
- The greatest common divisor of a finite list of integers is the largest positive number that is a divisor of every integer in the list.
H
[edit]- Hasse
- Hasse's theorem on elliptic curves.
- Hecke
- Hecke ring
I
[edit]- ideal
- The ideal class group of a number field is the group of fractional ideals in the ring of integers in the field modulo principal ideals. The cardinality of the group is called the class number of the number field. It measures the extent of the failure of unique factorization.
- integer
- 1. The integers are the numbers …, -3, -2, -1, 0, 1, 2, 3, ….
- 2. In algebraic number theory, an integer sometimes means an element of a ring of integers; e.g., a Gaussian integer. To avoid ambiguity, an integer contained in is sometimes called a rational integer.
- Iwasawa
- Iwasawa theory
L
[edit]- Langlands
- Langlands program
- least common multiple
- The least common multiple of a finite list of integers is the smallest positive number that is a multiple of every integer in the list.
- Legendre symbol
- Legendre symbol
- local
- 1. A local field in number theory is the completion of a number field at a finite place.
- 2. The local–global principle.
M
[edit]- Mersenne prime
- A Mersenne prime is a prime number one less than a power of 2.
- modular form
- Modular form
- modularity theorem
- The modularity theorem (which used to be called the Taniyama–Shimura conjecture)
N
[edit]- number field
- A number field, also called an algebraic number field, is a finite-degree field extension of the field of rational numbers.
- non-abelian
- The non-abelian class field theory is an extension of the class field theory (which is about abelian extensions of number fields) to non-abelian extensions; or at least the idea of such a theory. The non-abelian theory does not exist in a definitive form today.
P
[edit]- Pell's equation
- Pell's equation
- place
- A place is an equivalence class of non-Archimedean valuations (finite place) or absolute values (infinite place).
- prime number
- 1. A prime number is a positive integer with no divisors other than itself and 1.
- 2. The prime number theorem describes the asymptotic distribution of prime numbers.
- profinite
- A profinite integer is an element in the profinite completion of along all integers.
- Pythagorean triple
- A Pythagorean triple is three positive integers a, b, c such that a2 + b2 = c2.
R
[edit]- ramification
- The ramification theory.
- relatively prime
- See coprime.
- ring of integers
- The ring of integers in a number field is the ring consisting of all algebraic numbers contained in the field.
Q
[edit]- quadratic reciprocity
- Quadratic reciprocity
- quadratic residue
- Quadratic residue
S
[edit]- sieve of Eratosthenes
- Sieve of Eratosthenes
- square-free integer
- A square-free integer is an integer that is not divisible by any square other than 1.
- square number
- A square number is an integer that is the square of an integer. For example, 4 and 9 are squares, but 10 is not a square.
- Szpiro
- Szpiro's conjecture is, in a modified form, equivalent to the abc conjecture.
T
[edit]- Takagi
- Takagi existence theorem is a theorem in class field theory.
- totient function
- See Euler's totient function.
- twin prime
- A twin prime is a prime number that is 2 less or 2 more than another prime number. For example, 7 is a twin prime, since it is prime and 5 is also prime.
V
[edit]- valuation
- valuation (algebra)
- valued field
- A valued field is a field with a valuation on it.
- Vojta
- Vojta's conjecture
W
[edit]- Wilson's theorem
- Wilson's theorem states that n > 1 is prime if and only if (n-1)! is congruent to -1 mod n.