Jump to content

Ghana Research Reactor-1

Coordinates: 5°33′N 0°12′W / 5.550°N 0.200°W / 5.550; -0.200
From Wikipedia, the free encyclopedia
GHARR-1
Ghana Research Reactor-1 is located in Ghana
Ghana Research Reactor-1
Accra, Ghana
Operating InstitutionGhana Atomic Energy Commission
LocationAccra, Ghana
Coordinates5°33′N 0°12′W / 5.550°N 0.200°W / 5.550; -0.200
TypeMiniature Neutron Source Reactor
Power30 kW (thermal)
Construction and Upkeep
Construction Began1994
Time to Construct1 year
First CriticalityDecember 17, 1994
Annual Upkeep Cost1.5 M $US
Technical Specifications
Max Thermal Flux1.012 s−1 cm−2
Max Fast Flux1.2·1012 s−1 cm−2
CoolingLight water
Neutron ModeratorLight water
Neutron ReflectorBeryllium

The Ghana Research Reactor-1 (GHARR-1) is a nuclear research reactor located in Accra, Ghana and is the only nuclear reactor in the country. It is operated by the National Nuclear Research Institute, a sub-division of the Ghana Atomic Energy Commission. The reactor is a commercial version of the Chinese Miniature Neutron Source Reactor (MNSR) design. The reactor had its first criticality on December 17, 1994.[1]

Description

[edit]

GHARR-1 is a light water reactor with a maximum thermal power of 30 kW, a maximum thermal flux of 1012 s−1cm−2, and a maximum fast flux of 1.2·1012 s−1cm−2.[2] Beryllium is used as a reflector and the reactor is cooled by natural convection.[1] Low enriched fuel is used, although the reactor was initially designed for 90.2% enriched uranium.[3] The reactor core has 347 fuel rods.

The reactor is mainly used as a research tool, including for neutron activation analysis and reactor physics experiments.[4] Research has indicated that GHARR-1 could be used to produce the radionuclide Technetium-99 in the future.[5] It is also used for education of university students at the University of Ghana School of Nuclear and Allied Sciences.

Conversion to low enriched uranium

[edit]

The miniature neutron source reactor (MNSR) design originally operated with high enriched uranium (HEU), typically 90% uranium-235 or greater. In 2006, the International Atomic Energy Agency (IAEA) developed a Collaborative Research Project (CRP) and eventually a MNSR working group to coordinate conversion to low enriched uranium (LEU) fuel,[6] typically defined as lower than 20% Uranium-235. HEU is associated with increased proliferation risks, as it can be more easily diverted to non-peaceful uses of atomic energy than LEU. The Ghana Atomic Energy Commission is a member of the MNSR working group, and has successfully transitioned GHARR-1 to low enriched fuel.

Ghana was the first country outside of China to successfully convert their MNSR reactor to LEU.[7] The HEU core was removed in August 2016[3] and the operation was completed in 2017.[6] The original nuclear fuel was UAl4 with Al-303-1 cladding while the new LEU fuel is uranium dioxide at 13% enrichment with Zircaloy-4 cladding.[8]

See also

[edit]

References

[edit]
  1. ^ a b BSS, IAEA - MTIT -. "Header Information - RRDB - IAEA". nucleus.iaea.org. Retrieved 2018-02-15.
  2. ^ "Ghana, Republic of: Research Reactor Details - GHARR-1". www-naweb.iaea.org. Retrieved 2023-01-11.
  3. ^ a b "Ghanaian reactor at full power after fuel conversion". www.world-nuclear-news.org. Retrieved 2018-02-15.
  4. ^ Amuasi, J. H.; Schandorf, C.; Yeboah, J. "Safety of Ghana Research Reactor (GHARR-1)" (PDF). International Atomic Energy Agency. Retrieved February 14, 2017.
  5. ^ Akaho, E. H. K.; Maaku, B. T.; Anim-Sampong, S. (1998). "A mathematical model for predicting activities of 99Mo, 99mTc and 99Tc: with application to Ghana Research Reactor-1". Ghana Journal of Chemistry. 4 (1): 7–13. ISSN 0855-0484.
  6. ^ a b (IAEA), International Atomic Energy Agency. "MNSR - IAEA NEFW". www.iaea.org. Retrieved 2018-02-15.
  7. ^ "Supporting Nuclear Non-Proliferation: Ghana Converts Research Reactor from HEU to LEU Fuel". 2017-08-29. Retrieved 2018-02-15.
  8. ^ Odoi, H. C.; Gbadago, J. K.; Abrefah, R. G.; Birikorang, S. A.; Sogbadjo, B. B. M.; Ampomah-Amoako, E.; Morman, J. "Efforts Made for the Conversion of Ghana's MNSR to LEU" (PDF). 35th International Meeting on Reduced Enrichment for Research and Test Reactors.