Geranylacetone
Names | |
---|---|
Preferred IUPAC name
(5E)-6,10-Dimethylundeca-5,9-dien-2-one | |
Other names
6,10-dimethyl-(5E)-5,9-undecadien-2-one, (E)-geranylacetone
| |
Identifiers | |
3D model (JSmol)
|
|
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.021.155 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
| |
Properties | |
C13H22O | |
Molar mass | 194.318 g·mol−1 |
Density | 0.8698 g/cm3 (20 °C) |
Boiling point | 126–8 °C (259–46 °F; 399–281 K) 10 mm Hg |
Hazards | |
GHS labelling: | |
Warning | |
H315, H411 | |
P264, P273, P280, P302+P352, P321, P332+P313, P362, P391, P501 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Geranylacetone is an organic compound with the formula CH3C(O)(CH2)2CH=C(CH3)(CH2)2CH=C(CH3)2. A colorless oil, it is the product of coupling geranyl and acetonyl groups. It is a precursor to synthetic squalene.[1]
Synthesis and occurrence
[edit]Geranylacetone can be produced by transesterification of ethyl acetoacetate with linalool:
- EtOC(O)CH2C(O)CH3 + C10H17OH → C10H17OC(O)CH2C(O)CH3 + EtOH
The esterification of linalool can also be effected with ketene or isopropenyl methyl ether. The resulting linalyl ester undergoes Carroll rearrangement to give geranylacetone. Geranyl acetone is a precursor to isophytol, which is used in the manufacture of Vitamin E. Other derivatives of geranyl acetone are farnesol and nerolidol.[2]
Geranylacetone is a flavor component of many plants including rice, mango,[3] and tomatoes.
Together with other ketones, geranylacetone results from the degradation of vegetable matter by ozone.[4]
Biosynthesis
[edit]It arises by the oxidation of certain carotenoids. Such reaction are catalyzed by carotenoid oxygenase.[5]
References
[edit]- ^ Eggersdorfer, Manfred (2000). "Terpenes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a26_205. ISBN 978-3527306732.
- ^ Sell, Charles S. (2006). "Terpenoids". Kirk-Othmer Encyclopedia of Chemical Technology. doi:10.1002/0471238961.2005181602120504.a01.pub2. ISBN 0471238961.
- ^ Pino, Jorge A.; Mesa, Judith; Muñoz, Yamilie; Martí, M. Pilar; Marbot, Rolando (2005). "Volatile Components from Mango (Mangifera indica L.) Cultivars". Journal of Agricultural and Food Chemistry. 53 (6): 2213–2223. doi:10.1021/jf0402633. PMID 15769159.
- ^ Fruekilde, P.; Hjorth, J.; Jensen, N.R.; Kotzias, D.; Larsen, B. (1998). "Ozonolysis at Vegetation Surfaces". Atmospheric Environment. 32 (11): 1893–1902. doi:10.1016/S1352-2310(97)00485-8.
- ^ Simkin, Andrew J.; Schwartz, Steven H.; Auldridge, Michele; Taylor, Mark G.; Klee, Harry J. (2004). "The Tomato Carotenoid Cleavage Dioxygenase 1 Genes Contribute to the Formation of the Flavor Volatiles β-Ionone, Pseudoionone, and Geranylacetone". The Plant Journal. 40 (6): 882–892. doi:10.1111/j.1365-313X.2004.02263.x. PMID 15584954.