In mathematics , especially representation theory and combinatorics , a Frobenius characteristic map is an isometric isomorphism between the ring of characters of symmetric groups and the ring of symmetric functions . It builds a bridge between representation theory of the symmetric groups and algebraic combinatorics . This map makes it possible to study representation problems with help of symmetric functions and vice versa. This map is named after German mathematician Ferdinand Georg Frobenius .
The ring of characters [ edit ]
Source:[ 1]
Let
R
n
{\displaystyle R^{n}}
be the
Z
{\displaystyle \mathbb {Z} }
-module generated by all irreducible characters of
S
n
{\displaystyle S_{n}}
over
C
{\displaystyle \mathbb {C} }
. In particular
S
0
=
{
1
}
{\displaystyle S_{0}=\{1\}}
and therefore
R
0
=
Z
{\displaystyle R^{0}=\mathbb {Z} }
. The ring of characters is defined to be the direct sum
R
=
⨁
n
=
0
∞
R
n
{\displaystyle R=\bigoplus _{n=0}^{\infty }R^{n}}
with the following multiplication to make
R
{\displaystyle R}
a graded commutative ring. Given
f
∈
R
n
{\displaystyle f\in R^{n}}
and
g
∈
R
m
{\displaystyle g\in R^{m}}
, the product is defined to be
f
⋅
g
=
ind
S
m
×
S
n
S
m
+
n
(
f
×
g
)
{\displaystyle f\cdot g=\operatorname {ind} _{S_{m}\times S_{n}}^{S_{m+n}}(f\times g)}
with the understanding that
S
m
×
S
n
{\displaystyle S_{m}\times S_{n}}
is embedded into
S
m
+
n
{\displaystyle S_{m+n}}
and
ind
{\displaystyle \operatorname {ind} }
denotes the induced character .
Frobenius characteristic map [ edit ]
For
f
∈
R
n
{\displaystyle f\in R^{n}}
, the value of the Frobenius characteristic map
ch
{\displaystyle \operatorname {ch} }
at
f
{\displaystyle f}
, which is also called the Frobenius image of
f
{\displaystyle f}
, is defined to be the polynomial
ch
(
f
)
=
1
n
!
∑
w
∈
S
n
f
(
w
)
p
ρ
(
w
)
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
.
{\displaystyle \operatorname {ch} (f)={\frac {1}{n!}}\sum _{w\in S_{n}}f(w)p_{\rho (w)}=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu }.}
Here,
ρ
(
w
)
{\displaystyle \rho (w)}
is the integer partition determined by
w
{\displaystyle w}
. For example, when
n
=
3
{\displaystyle n=3}
and
w
=
(
12
)
(
3
)
{\displaystyle w=(12)(3)}
,
ρ
(
w
)
=
(
2
,
1
)
{\displaystyle \rho (w)=(2,1)}
corresponds to the partition
3
=
2
+
1
{\displaystyle 3=2+1}
. Conversely, a partition
μ
{\displaystyle \mu }
of
n
{\displaystyle n}
(written as
μ
⊢
n
{\displaystyle \mu \vdash n}
) determines a conjugacy class
K
μ
{\displaystyle K_{\mu }}
in
S
n
{\displaystyle S_{n}}
. For example, given
μ
=
(
2
,
1
)
⊢
3
{\displaystyle \mu =(2,1)\vdash 3}
,
K
μ
=
{
(
12
)
(
3
)
,
(
13
)
(
2
)
,
(
23
)
(
1
)
}
{\displaystyle K_{\mu }=\{(12)(3),(13)(2),(23)(1)\}}
is a conjugacy class. Hence by abuse of notation
f
(
μ
)
{\displaystyle f(\mu )}
can be used to denote the value of
f
{\displaystyle f}
on the conjugacy class determined by
μ
{\displaystyle \mu }
. Note this always makes sense because
f
{\displaystyle f}
is a class function .
Let
μ
{\displaystyle \mu }
be a partition of
n
{\displaystyle n}
, then
p
μ
{\displaystyle p_{\mu }}
is the product of power sum symmetric polynomials determined by
μ
{\displaystyle \mu }
of
n
{\displaystyle n}
variables. For example, given
μ
=
(
3
,
2
)
{\displaystyle \mu =(3,2)}
, a partition of
5
{\displaystyle 5}
,
p
μ
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
p
3
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
p
2
(
x
1
,
x
2
,
x
3
,
x
4
,
x
5
)
=
(
x
1
3
+
x
2
3
+
x
3
3
+
x
4
3
+
x
5
3
)
(
x
1
2
+
x
2
2
+
x
3
2
+
x
4
2
+
x
5
2
)
{\displaystyle {\begin{aligned}p_{\mu }(x_{1},x_{2},x_{3},x_{4},x_{5})&=p_{3}(x_{1},x_{2},x_{3},x_{4},x_{5})p_{2}(x_{1},x_{2},x_{3},x_{4},x_{5})\\&=(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{4}^{3}+x_{5}^{3})(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+x_{5}^{2})\end{aligned}}}
Finally,
z
λ
{\displaystyle z_{\lambda }}
is defined to be
n
!
k
λ
{\displaystyle {\frac {n!}{k_{\lambda }}}}
, where
k
λ
{\displaystyle k_{\lambda }}
is the cardinality of the conjugacy class
K
λ
{\displaystyle K_{\lambda }}
. For example, when
λ
=
(
2
,
1
)
⊢
3
{\displaystyle \lambda =(2,1)\vdash 3}
,
z
λ
=
3
!
3
=
2
{\displaystyle z_{\lambda }={\frac {3!}{3}}=2}
. The second definition of
ch
(
f
)
{\displaystyle \operatorname {ch} (f)}
can therefore be justified directly:
1
n
!
∑
w
∈
S
n
f
(
w
)
p
ρ
(
w
)
=
∑
μ
⊢
n
k
μ
n
!
f
(
μ
)
p
μ
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
{\displaystyle {\frac {1}{n!}}\sum _{w\in S_{n}}f(w)p_{\rho (w)}=\sum _{\mu \vdash n}{\frac {k_{\mu }}{n!}}f(\mu )p_{\mu }=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu }}
Inner product and isometry [ edit ]
Source:[ 2]
The inner product on the ring of symmetric functions is the Hall inner product. It is required that
⟨
h
μ
,
m
λ
⟩
=
δ
μ
λ
{\textstyle \langle h_{\mu },m_{\lambda }\rangle =\delta _{\mu \lambda }}
. Here,
m
λ
{\displaystyle m_{\lambda }}
is a monomial symmetric function and
h
μ
{\displaystyle h_{\mu }}
is a product of completely homogeneous symmetric functions . To be precise, let
μ
=
(
μ
1
,
μ
2
,
⋯
)
{\displaystyle \mu =(\mu _{1},\mu _{2},\cdots )}
be a partition of integer, then
h
μ
=
h
μ
1
h
μ
2
⋯
.
{\displaystyle h_{\mu }=h_{\mu _{1}}h_{\mu _{2}}\cdots .}
In particular, with respect to this inner product,
{
p
λ
}
{\displaystyle \{p_{\lambda }\}}
form a orthogonal basis :
⟨
p
λ
,
p
μ
⟩
=
δ
λ
μ
z
λ
{\textstyle \langle p_{\lambda },p_{\mu }\rangle =\delta _{\lambda \mu }z_{\lambda }}
, and the Schur polynomials
{
s
λ
}
{\displaystyle \{s_{\lambda }\}}
form a orthonormal basis :
⟨
s
λ
,
s
μ
⟩
=
δ
λ
μ
{\textstyle \langle s_{\lambda },s_{\mu }\rangle =\delta _{\lambda \mu }}
, where
δ
λ
μ
{\displaystyle \delta _{\lambda \mu }}
is the Kronecker delta .
Inner product of characters [ edit ]
Let
f
,
g
∈
R
n
{\displaystyle f,g\in R^{n}}
, their inner product is defined to be[ 3]
⟨
f
,
g
⟩
n
=
1
n
!
∑
w
∈
S
n
f
(
w
)
g
(
w
)
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
g
(
μ
)
{\displaystyle \langle f,g\rangle _{n}={\frac {1}{n!}}\sum _{w\in S_{n}}f(w)g(w)=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )g(\mu )}
If
f
=
∑
n
f
n
,
g
=
∑
n
g
n
{\displaystyle f=\sum _{n}f_{n},g=\sum _{n}g_{n}}
, then
⟨
f
,
g
⟩
=
∑
n
⟨
f
n
,
g
n
⟩
n
{\displaystyle \langle f,g\rangle =\sum _{n}\langle f_{n},g_{n}\rangle _{n}}
Frobenius characteristic map as an isometry [ edit ]
One can prove that the Frobenius characteristic map is an isometry by explicit computation. To show this, it suffices to assume that
f
,
g
∈
R
n
{\displaystyle f,g\in R^{n}}
:
⟨
ch
(
f
)
,
ch
(
g
)
⟩
=
⟨
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
p
μ
,
∑
λ
⊢
n
z
λ
−
1
g
(
λ
)
p
λ
⟩
=
∑
μ
,
λ
⊢
n
z
μ
−
1
z
λ
−
1
f
(
μ
)
g
(
μ
)
⟨
p
μ
,
p
λ
⟩
=
∑
μ
,
λ
⊢
n
z
μ
−
1
z
λ
−
1
f
(
μ
)
g
(
μ
)
z
μ
δ
μ
λ
=
∑
μ
⊢
n
z
μ
−
1
f
(
μ
)
g
(
μ
)
=
⟨
f
,
g
⟩
{\displaystyle {\begin{aligned}\langle \operatorname {ch} (f),\operatorname {ch} (g)\rangle &=\left\langle \sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )p_{\mu },\sum _{\lambda \vdash n}z_{\lambda }^{-1}g(\lambda )p_{\lambda }\right\rangle \\&=\sum _{\mu ,\lambda \vdash n}z_{\mu }^{-1}z_{\lambda }^{-1}f(\mu )g(\mu )\langle p_{\mu },p_{\lambda }\rangle \\&=\sum _{\mu ,\lambda \vdash n}z_{\mu }^{-1}z_{\lambda }^{-1}f(\mu )g(\mu )z_{\mu }\delta _{\mu \lambda }\\&=\sum _{\mu \vdash n}z_{\mu }^{-1}f(\mu )g(\mu )\\&=\langle f,g\rangle \end{aligned}}}
The map
ch
{\displaystyle \operatorname {ch} }
is an isomorphism between
R
{\displaystyle R}
and the
Z
{\displaystyle \mathbb {Z} }
-ring
Λ
{\displaystyle \Lambda }
. The fact that this map is a ring homomorphism can be shown by Frobenius reciprocity .[ 4] For
f
∈
R
n
{\displaystyle f\in R^{n}}
and
g
∈
R
m
{\displaystyle g\in R^{m}}
,
ch
(
f
⋅
g
)
=
⟨
ind
S
n
×
S
m
S
m
+
n
(
f
×
g
)
,
ψ
⟩
m
+
n
=
⟨
f
×
g
,
res
S
n
×
S
m
S
m
+
n
ψ
⟩
=
1
n
!
m
!
∑
π
σ
∈
S
n
×
S
m
(
f
×
g
)
(
π
σ
)
p
ρ
(
π
σ
)
=
1
n
!
m
!
∑
π
∈
S
n
,
σ
∈
S
m
f
(
π
)
g
(
σ
)
p
ρ
(
π
)
p
ρ
(
σ
)
=
[
1
n
!
∑
π
∈
S
n
f
(
π
)
p
ρ
(
π
)
]
[
1
m
!
∑
σ
∈
S
m
g
(
σ
)
p
ρ
(
σ
)
]
=
ch
(
f
)
ch
(
g
)
{\displaystyle {\begin{aligned}\operatorname {ch} (f\cdot g)&=\langle \operatorname {ind} _{S_{n}\times S_{m}}^{S_{m+n}}(f\times g),\psi \rangle _{m+n}\\&=\langle f\times g,\operatorname {res} _{S_{n}\times S_{m}}^{S_{m+n}}\psi \rangle \\&={\frac {1}{n!m!}}\sum _{\pi \sigma \in S_{n}\times S_{m}}(f\times g)(\pi \sigma )p_{\rho (\pi \sigma )}\\&={\frac {1}{n!m!}}\sum _{\pi \in S_{n},\sigma \in S_{m}}f(\pi )g(\sigma )p_{\rho (\pi )}p_{\rho (\sigma )}\\&=\left[{\frac {1}{n!}}\sum _{\pi \in S_{n}}f(\pi )p_{\rho (\pi )}\right]\left[{\frac {1}{m!}}\sum _{\sigma \in S_{m}}g(\sigma )p_{\rho (\sigma )}\right]\\&=\operatorname {ch} (f)\operatorname {ch} (g)\end{aligned}}}
Defining
ψ
:
S
n
→
Λ
n
{\displaystyle \psi :S_{n}\to \Lambda ^{n}}
by
ψ
(
w
)
=
p
ρ
(
w
)
{\displaystyle \psi (w)=p_{\rho (w)}}
, the Frobenius characteristic map can be written in a shorter form:
ch
(
f
)
=
⟨
f
,
ψ
⟩
n
,
f
∈
R
n
.
{\displaystyle \operatorname {ch} (f)=\langle f,\psi \rangle _{n},\quad f\in R^{n}.}
In particular, if
f
{\displaystyle f}
is an irreducible representation, then
ch
(
f
)
{\displaystyle \operatorname {ch} (f)}
is a Schur polynomial of
n
{\displaystyle n}
variables. It follows that
ch
{\displaystyle \operatorname {ch} }
maps an orthonormal basis of
R
{\displaystyle R}
to an orthonormal basis of
Λ
{\displaystyle \Lambda }
. Therefore it is an isomorphism.
Computing the Frobenius image [ edit ]
Let
f
{\displaystyle f}
be the alternating representation of
S
3
{\displaystyle S_{3}}
, which is defined by
f
(
σ
)
v
=
sgn
(
σ
)
v
{\displaystyle f(\sigma )v=\operatorname {sgn}(\sigma )v}
, where
sgn
(
σ
)
{\displaystyle \operatorname {sgn}(\sigma )}
is the sign of the permutation
σ
{\displaystyle \sigma }
. There are three conjugacy classes of
S
3
{\displaystyle S_{3}}
, which can be represented by
e
{\displaystyle e}
(identity or the product of three 1-cycles),
(
12
)
{\displaystyle (12)}
(transpositions or the products of one 2-cycle and one 1-cycle) and
(
123
)
{\displaystyle (123)}
(3-cycles). These three conjugacy classes therefore correspond to three partitions of
3
{\displaystyle 3}
given by
(
1
,
1
,
1
)
{\displaystyle (1,1,1)}
,
(
2
,
1
)
{\displaystyle (2,1)}
,
(
3
)
{\displaystyle (3)}
. The values of
f
{\displaystyle f}
on these three classes are
1
,
−
1
,
1
{\displaystyle 1,-1,1}
respectively. Therefore:
ch
(
f
)
=
z
(
1
,
1
,
1
)
−
1
f
(
(
1
,
1
,
1
)
)
p
(
1
,
1
,
1
)
+
z
(
2
,
1
)
f
(
(
2
,
1
)
)
p
(
2
,
1
)
+
z
(
3
)
−
1
f
(
(
3
)
)
p
(
3
)
=
1
6
(
x
1
+
x
2
+
x
3
)
3
−
1
2
(
x
1
2
+
x
2
2
+
x
3
2
)
(
x
1
+
x
2
+
x
3
)
+
1
3
(
x
1
3
+
x
2
3
+
x
3
3
)
=
x
1
x
2
x
3
{\displaystyle {\begin{aligned}\operatorname {ch} (f)&=z_{(1,1,1)}^{-1}f((1,1,1))p_{(1,1,1)}+z_{(2,1)}f((2,1))p_{(2,1)}+z_{(3)}^{-1}f((3))p_{(3)}\\&={\frac {1}{6}}(x_{1}+x_{2}+x_{3})^{3}-{\frac {1}{2}}(x_{1}^{2}+x_{2}^{2}+x_{3}^{2})(x_{1}+x_{2}+x_{3})+{\frac {1}{3}}(x_{1}^{3}+x_{2}^{3}+x_{3}^{3})\\&=x_{1}x_{2}x_{3}\end{aligned}}}
Since
f
{\displaystyle f}
is an irreducible representation (which can be shown by computing its characters ), the computation above gives the Schur polynomial of three variables corresponding to the partition
3
=
1
+
1
+
1
{\displaystyle 3=1+1+1}
.
^ MacDonald, Ian Grant (2015). Symmetric functions and Hall polynomials . Oxford University Press; 2nd edition. p. 112. ISBN 9780198739128 .
^ Macdonald, Ian Grant (2015). Symmetric functions and Hall polynomials . Oxford University Press; 2nd edition. p. 63. ISBN 9780198739128 .
^ Stanley, Richard (1999). Enumerative Combinatorics: Volume 2 (Cambridge Studies in Advanced Mathematics Book 62) . Cambridge University Press. p. 349. ISBN 9780521789875 .
^ Stanley, Richard (1999). Enumerative Combinatorics: Volume 2 (Cambridge Studies in Advanced Mathematics Book 62) . Cambridge University Press. p. 352. ISBN 9780521789875 .