Jump to content

Ferrocenecarboxaldehyde

From Wikipedia, the free encyclopedia
Ferrocenecarboxaldehyde
Names
Other names
FcCHO, Formylferrocene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.950 Edit this at Wikidata
  • InChI=1S/C6H5O.C5H5.Fe/c7-5-6-3-1-2-4-6;1-2-4-5-3-1;/h1-5H;1-5H;/q2*-1;+2
    Key: MQHZGUNMWQBVDK-UHFFFAOYSA-N
  • InChI=1S/C6H5O.C5H5.Fe/c7-5-6-3-1-2-4-6;1-2-4-5-3-1;/h1-5H;1-5H;/q2*-1;+2
    Key: MQHZGUNMWQBVDK-UHFFFAOYSA-N
  • [CH-]1C=CC=C1.C1=C[C-](C=C1)C=O.[Fe+2]
  • C(=O)[C-]12[Fe+2]3456789([CH]1=[CH]3[CH]4=[CH]52)[CH-]%10[CH]6=[CH]7[CH]8=[CH]9%10
Properties
C11H10FeO
Molar mass 214.045 g·mol−1
Appearance orange solid
Density 1.566 g/cm3[1]
Melting point 118–120 °C (244–248 °F; 391–393 K)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Ferrocenecarboxaldehyde is the organoiron compound with the formula (C5H5)Fe(C5HCHO). The molecule consists of ferrocene substituted by an formyl group on one of the cyclopentadienyl rings. It is an orange, air-stable solid that is soluble in organic solvents.

Synthesis

[edit]

Ferrocenecarboxaldehyde is prepared by Vilsmeier-Haack reaction (formylation) using dimethylformamide and phosphorus oxychloride.[2] Diformylation does not occur readily.[3]

According to X-ray crystallography ferrocenecarboxaldehyde adopts the expected sandwich structure exhibited by other ferrocenes. The formyl group is coplanar with its attached ring.[4]

In its IR spectrum, ferrocenecarboxaldehyde is characterized by a low frequency νCO band at 1670 cm−1 vs 1704 cm−1 for benzaldehyde.[3]

Reactions

[edit]

Ferrocenecarboxaldehyde behaves like other aldehydes in terms of its reactivity, the main difference is that it is electroactive. Its basicity is indicated by the solubility of the compound in hydrochloric acid.[3]

Ferrocenecarboxaldehyde, owing to the versatility of the formyl group, is a precursor to many ferrocene-modified compounds. With a Wittig reagent, it converts to vinylferrocene and related derivatives.[5] With primary amines, ferrocenecarboxaldehyde condenses to give imines. The azomethine derivative undergoes 1,3-cycloaddition to C60.[6]

It can be reduced to the corresponding alcohol with hydride reducing agents.[7] Asymmetric alkylation gives the chiral α-hydroxyethylferrocene.[8] Dioxane derivatives, obtainable from 1,3-diols and the aldehyde, sustain ortho lithiation.[9]

[edit]

References

[edit]
  1. ^ Sato, Kumiko; Iwai, Makoto; Sano, Hirotoshi; Konno, Michiko (1984). "Plastic Phase of Formylferrocene Studied by X-Ray Diffraction and Mössbauer Spectroscopy". Bulletin of the Chemical Society of Japan. 57 (3): 634–638. doi:10.1246/bcsj.57.634.
  2. ^ Graham, P. J.; Lindsey, R. V.; Parshall, G. W.; Peterson, M. L.; Whitman, G. M. (1957). "Some Acyl Ferrocenes and their Reactions". Journal of the American Chemical Society. 79 (13): 3416–3420. doi:10.1021/ja01570a027.
  3. ^ a b c Rausch, M. D. (1963). "Metallocene Chemistry—A Decade of Progress". Canadian Journal of Chemistry. 41 (5): 1289–1314. doi:10.1139/v63-182.
  4. ^ Lousada, Cláudio M.; Pinto, Susana S.; Canongia Lopes, José N.; Minas Da Piedade, M. Fátima; Diogo, Hermínio P.; Minas Da Piedade, Manuel E. (2008). "Experimental and Molecular Dynamics Simulation Study of the Sublimation and Vaporization Energetics of Iron Metalocenes. Crystal Structures of Fe(η5-C5H4CH3)2and Fe[(η5-(C5H5)(η5-C5H4CHO)]". The Journal of Physical Chemistry A. 112 (13): 2977–2987. doi:10.1021/jp7107818. PMID 18331009.
  5. ^ Liu WY, Xu QH, Ma YX, Liang YM, Dong NL, Guan DP (2001). "Solvent-free synthesis of ferrocenylethene derivatives". J. Organomet. Chem. 625: 128–132. doi:10.1016/S0022-328X(00)00927-X.
  6. ^ Maggini, Michele; Scorrano, Gianfranco; Prato, Maurizio (1993). "Addition of Azomethine Ylides to C60: Synthesis, Characterization, and Functionalization of Fullerene Pyrrolidines". Journal of the American Chemical Society. 115 (21): 9798–9799. doi:10.1021/ja00074a056.
  7. ^ Lednicer, Daniel; Mashburn, Jr., T. Arthur; Hauser, Charles R. (1960). "Hydroxymethylferrocene". Organic Syntheses. 40: 52. doi:10.15227/orgsyn.040.0052.
  8. ^ Kitamura, Masato; Oka, Hiromasa; Suga, Seiji; Noyori, Ryoji (2002). "Catalytic Enantioselective Addition of Dialkylzincs To Aldehydes Using (2S)-(−)-3-exo-(Dimethylamino)isoborneol: (S)-1-Phenyl-1-propanol". Organic Syntheses. 79: 139. doi:10.15227/orgsyn.079.0139.
  9. ^ Riant, Olivier; Samuel, Odile; Flessner, Timo; Taudien, Stephan; Kagan, Henri B. (1997). "An Efficient Asymmetric Synthesis of 2-Substituted Ferrocenecarboxaldehydes". The Journal of Organic Chemistry. 62 (20): 6733–6745. doi:10.1021/jo970075u.