Electroweak star
This article relies largely or entirely on a single source. (July 2014) |
It has been suggested that this article be merged into Exotic star. (Discuss) Proposed since October 2024. |
An electroweak star is a hypothetical type of exotic star, whereby the gravitational collapse of the star is prevented by radiation pressure resulting from electroweak burning, that is, the energy released by conversion of quarks to leptons through the electroweak force. This process occurs in a volume at the star's core approximately the size of an apple, containing about two Earth masses[1] and reaching temperatures on the order of 1015 K (1 PK).[2]
Formation
[edit]The stage of life of a star that produces an electroweak star is theorized to occur after a supernova collapse. Electroweak stars are denser than quark stars, and may form when quark degeneracy pressure is no longer able to withstand gravitational attraction, but may still be withstood by electroweak burning radiation pressure. This phase of a star's life may last upwards of 10 million years.[1]
The energy output of an electroweak star is limited by the quark supply rate, which is dictated by gravitational collapse. Each interaction converts nine quarks into three anti-leptons, violating conservation of baryon and lepton number while preserving B−L, generating around 300 GeV per interaction. The energy diffuses out of the star as a mixture of neutrinos and photons. Electroweak stars could be identified through the equal number of neutrinos emitted of all three generations, taking into account neutrino oscillation.[2]
See also
[edit]- Electroweak force
- Chiral anomaly
- Sphaleron
- Quark nova
- Quark star
- Preon star
- Lepton
- Quark
- Degenerate matter
- Degeneracy pressure
References
[edit]- ^ a b Shiga, D. (4 January 2010). "Exotic stars may mimic big bang". New Scientist. Archived from the original on 18 January 2010. Retrieved 18 February 2010.
- ^ a b Dai, De-Chang; Lue, Arthur; Starkman, Glenn; Stojkovic, Dejan (6 December 2010). "Electroweak stars: How nature may capitalize on the standard model's ultimate fuel". Journal of Cosmology and Astroparticle Physics. 2010 (12): 004. arXiv:0912.0520. Bibcode:2010JCAP...12..004D. doi:10.1088/1475-7516/2010/12/004. ISSN 1475-7516. S2CID 118417017.
Sources
[edit]- "Theorists Propose a New Way to Shine – And a New Kind of Star: 'Electroweak'". ScienceDaily. 15 December 2009. Retrieved 16 December 2009.
- "A New Way To Shine, A New Kind Of Star". SpaceDaily. 16 December 2009. Retrieved 16 December 2009.
- "Theorists propose a new way to shine — and a new kind of star". Astronomy Magazine. 15 December 2009. Retrieved 16 December 2009.
- "Astronomers Predict New Class of 'Electroweak' Star". Technology Review. 10 December 2009. Archived from the original on 19 October 2012. Retrieved 16 December 2009.
Further reading
[edit]- Dai, De-Chang; Lue, Arthur; Starkman, Glenn; Stojkovic, Dejan (2010). "Electroweak stars: How nature may capitalize on the standard model's ultimate fuel". Journal of Cosmology and Astroparticle Physics. 2010 (12): 004. arXiv:0912.0520. Bibcode:2010JCAP...12..004D. doi:10.1088/1475-7516/2010/12/004. S2CID 118417017.
External links
[edit]- Vieru, Tudor (15 December 2009). "New type of cosmic objects: Electroweak stars". Softpedia. Retrieved 16 December 2009.