The Egorychev method is a collection of techniques introduced by Georgy Egorychev for finding identities among sums of binomial coefficients, Stirling numbers, Bernoulli numbers, Harmonic numbers, Catalan numbers and other combinatorial numbers. The method relies on two observations. First, many identities can be proved by extracting coefficients of generating functions. Second, many generating functions are convergent power series, and coefficient extraction can be done using the Cauchy residue theorem (usually this is done by integrating over a small circular contour enclosing the origin). The sought-for identity can now be found using manipulations of integrals. Some of these manipulations are not clear from the generating function perspective. For instance, the integrand is usually a rational function, and the sum of the residues of a rational function is zero, yielding a new expression for the original sum. The residue at infinity is particularly important in these considerations.
Some of the integrals employed by the Egorychev method are:
- First binomial coefficient integral

where
- Second binomial coefficient integral

where

where
![{\displaystyle [[k\leq n]]={\underset {z}{\mathrm {res} }}\;{\frac {z^{k}}{z^{n+1}}}{\frac {1}{1-z}}={\frac {1}{2\pi i}}\int _{|z|=\rho }{\frac {z^{k}}{z^{n+1}}}{\frac {1}{1-z}}\;dz}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/af4c988bb4e371b0a624433d0b91bacfbfbc2292)
where
![{\displaystyle \left[{n \atop k}\right]={\frac {n!}{k!}}\;{\underset {z}{\mathrm {res} }}\;{\frac {1}{z^{n+1}}}\left(\log {\frac {1}{1-z}}\right)^{k}={\frac {n!}{k!}}{\frac {1}{2\pi i}}\int _{|z|=\rho }{\frac {1}{z^{n+1}}}\left(\log {\frac {1}{1-z}}\right)^{k}\;dz}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/f50f5166d4a3d2a09ecc91705e7dc3042d489c73)
where

where
Suppose we seek to evaluate

which is claimed to be :
Introduce :
and :
This yields for the sum :
This is

Extracting the residue at
we get
![{\displaystyle {\begin{aligned}&{\frac {(-1)^{n}}{2\pi i}}\int _{|z|=\varepsilon }{\frac {(1+z)^{n}}{z^{n+1}}}{n \choose j}(1+z)^{j}\;dz\\[6pt]={}&{n \choose j}{\frac {(-1)^{n}}{2\pi i}}\int _{|z|=\varepsilon }{\frac {(1+z)^{n+j}}{z^{n+1}}}\;dz\\[6pt]={}&(-1)^{n}{n \choose j}{n+j \choose n}\end{aligned}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/73160d71da4c8dd07aa85b343727ab06d27b877b)
thus proving the claim.
Suppose we seek to evaluate
Introduce

Observe that this is zero when
so we may extend
to
infinity to obtain for the sum
![{\displaystyle {\begin{aligned}&{\frac {1}{2\pi i}}\int _{|z|=\varepsilon }{\frac {1}{z^{n+1}}}{\frac {1}{(1-z)^{n+1}}}\sum _{k\geq 1}k{\frac {z^{k}}{(1-z)^{k}}}\;dz\\[6pt]={}&{\frac {1}{2\pi i}}\int _{|z|=\varepsilon }{\frac {1}{z^{n+1}}}{\frac {1}{(1-z)^{n+1}}}{\frac {z/(1-z)}{(1-z/(1-z))^{2}}}\;dz\\[6pt]={}&{\frac {1}{2\pi i}}\int _{|z|=\varepsilon }{\frac {1}{z^{n}}}{\frac {1}{(1-z)^{n}}}{\frac {1}{(1-2z)^{2}}}\;dz.\end{aligned}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/841229c38319f357d7d8113c05d96486eabd5af6)
Now put
so that (observe that with
the image of
with
small is another closed circle-like contour which makes one turn and which we may certainly deform to obtain another circle
)

and furthermore

to get for the integral

This evaluates by inspection to (use the Newton binomial)
![{\displaystyle {\begin{aligned}&4^{n-1}{n-1+1/2 \choose n-1}=4^{n-1}{n-1/2 \choose n-1}={\frac {4^{n-1}}{(n-1)!}}\prod _{q=0}^{n-2}(n-1/2-q)\\={}&{\frac {2^{n-1}}{(n-1)!}}\prod _{q=0}^{n-2}(2n-2q-1)={\frac {2^{n-1}}{(n-1)!}}{\frac {(2n-1)!}{2^{n-1}(n-1)!}}\\[6pt]={}&{\frac {n^{2}}{2n}}{2n \choose n}={\frac {1}{2}}n{2n \choose n}.\end{aligned}}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/7831d1aaeef12fb765ae5d5c5af0c68fe86f14bd)
Here the mapping from
to
determines
the choice of square root. For the conditions on
and
we have that for the series to converge we
require
or
or
The closest that the image
contour of
comes to the origin is
so we choose
for example
This also ensures that
so
does not intersect the branch
cut
(and is contained in the image of
). For example
and
will work.
This example also yields to simpler methods but was included here to demonstrate the effect of substituting into the variable of integration.
We may use the change of variables rule 1.8 (5) from the Egorychev text
(page 16) on the integral

with
and
We
get
and find
![{\displaystyle {\underset {w}{\mathrm {res} }}{\frac {1}{w^{n+1}}}\left.\left[{\frac {A(z)}{f(z)h'(z)}}\right]\right|_{z=g(w).}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/94e76ce0f0b04a2dde6ed256f9c36df84a5e7413)
with
the inverse of
.
This becomes
![{\displaystyle {\underset {w}{\mathrm {res} }}{\frac {1}{w^{n+1}}}\left.\left[{\frac {z/(1-2z)^{2}}{(1-2z)/(1-z)}}\right]\right|_{z=g(w)}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/b46cf3f78c93573c5d7bba275ed3404448e8520b)
or alternatively
![{\displaystyle {\underset {w}{\mathrm {res} }}{\frac {1}{w^{n+1}}}\left.\left[{\frac {z(1-z)}{(1-2z)^{3}}}\right]\right|_{z=g(w)}={\underset {w}{\mathrm {res} }}{\frac {1}{w^{n}}}\left.\left[{\frac {1}{(1-2z)^{3}}}\right]\right|_{z=g(w).}}](https://wikimedia.riteme.site/api/rest_v1/media/math/render/svg/ba26e00532c75f79704b3df98a27d882a315f227)
Observe that
so this is

and the rest of the computation continues as before.