Jump to content

Environmental Research Satellite

From Wikipedia, the free encyclopedia
(Redirected from ERS-9)

The Environmental Research Satellite (ERS, alternatively Earth Resources Satellite) program was a series of small satellites initially operated by the United States Air Force Office of Aerospace Research. Designed to be launched "piggyback" to other satellites during launch, detaching once in orbit, they were the smallest satellites launched to date—what would today be classified as microsatellites. 33 ERS satellites in six different series were launched between 1962 and 1971,[1] conducting scientific research and serving as test beds to investigate the reliability of new spacecraft components.[2]

The TRS and ORS families. From left to right: TRS Mk. 3, TRS Mk. 2, TRS Mk.1, an OV3 bus, ORS Mk. 1, ORS Mk. 2, ORS Mk. 3
The TRS and ORS families. From left to right: TRS Mk. 3, TRS Mk. 2, TRS Mk.1, an OV3 bus, ORS Mk. 1, ORS Mk. 2, ORS Mk. 3

Summary of launches

[edit]
Series First launch Last launch Built Confirmed launched Failed
TRS Mk. 1 1962-09-07 1963-07-19 10 10 7
TRS Mk. 2 1963-10-17 1964-10-7 4 2 0
ORS Mk.2 1966-06-19 1966-08-09 5 2 0
ORS Mk.3 1965-07-20 1967-04-28 2 2 0
OV5 1967-04-28 1969-05-23 9 8 1
TTS, TETR, TATS 1967-12-13 1971-09-29 4 4 3

TRS Mk. 1

[edit]

The TRS (Tetrahedral Research Satellite) Mk. 1 was developed by Space Technology Laboratories, a subdivision of TRW Inc., as an inexpensive, miniaturized "off-the-shelf" satellite that customers could use to perform simple experiments in orbit. The Mk. 1 was a regular tetrahedron measuring 16 cm (6.3 in) on a side, each face mounted with sufficient solar cells to operate the experiments and the telemetry system when the satellite was in the sun. Transmission of data was constant at that time as the spacecraft included neither internal battery nor command system.[3] A transistor-based system provided eight channels of data: five for experiments, two for telemetry calibration, and one for the spacecraft temperature. A 40 in (1.0 m) antenna transmitted data.[4] on 136.771 Mhz.[5]

Each TRS satellite was estimated to cost only $25,000 (equivalent to $213,888.89 in 2020) to build, excluding development, launch and mission operations costs.[3]

The Air Force Space Systems Division (AFSSD), then headed by Col. T. O. Wear, was the first and only customer for STL's TRS Mk. 1 satellites, initially purchasing six for its Environmental Research Satellite (ERS) program.[3] Ten TRS Mk. 1 satellites were ultimately produced, designed to research radiation and micrometeoroid flux in Earth orbit. All were launched from Vandenberg Air Force Base attached to primary payloads.[1]

Name Mass COSPAR ID Launch Reentry Primary satellites Mission Outcome
ERS 1 .7 kg (1.5 lb)[6] 1962 βπ 1962-11-11 1962-11-12 [7] Samos 11 (Samos-E6 5) Radiation studies Failed to separate
ERS 2 (TRS 1)[5] .6 kg (1.3 lb) 1962 αχ 1962-09-17 1962-10-17[7] KH-4 12 Radiation, natural and from Starfish Prime Failed to separate
ERS 3 1962-F09 1962-12-17 MIDAS 6, ERS 4 Radiation and micrometeorite studies; carried a cosmic ray experiment and an infrared plume experiment Failed to launch
ERS 4 1962-F09 1962-12-17 MIDAS 6, ERS 3 Radiation and micrometeorite studies; carried a cosmic ray experiment and an infrared plume experiment Failed to launch
ERS 5 (TRS 2)[5] .7 kg (1.5 lb) 1963-014B 1963-09-05 1963-11-11[7] MIDAS 7, DASH 1, West Ford 2, ERS 6 Van Allen Belts radiation and radiation damage to solar cells Successful
ERS 6 (TRS 3)[5] .7 kg (1.5 lb) 1963-014C 1963-09-05 1964-03-17[7] MIDAS 7, DASH 1, West Ford 2, ERS 5 Van Allen Belts radiation and radiation damage to solar cells Successful
ERS 7 1963-F09 1963-06-12 MIDAS 8, TRS 8 Radiation and micrometeorite studies Failed to launch
ERS 8 1963-F09 1963-06-12 MIDAS 8, TRS 7 Radiation and micrometeorite studies Failed to launch
ERS 9 (TRS 4)[5] 1.5 kg (3.3 lb) 1963-030B 1963-07-19 1963-08-11[7] MIDAS 9, DASH 2, ERS 10 Radiation damage to solar cells Successful
ERS 10 1.5 kg (3.3 lb) 1963-030A 1963-07-19 1964-09-24[7] MIDAS 9, DASH 2, ERS 09 Radiation damage to solar cells Failed to separate

[1]

Significant flights

[edit]

ERS 2 (TRS 1)

[edit]

At the time it was launched, TRS 1 was the smallest satellite ever placed into orbit. The aluminum spacecraft carried 140 solar cells, producing 600 milliwatts of power, and five radiation-detecting cells.[4] Though the satellite did not separate from its primary satellite,[1] it returned eight minutes of data per orbit to tracking stations below. It was designed to turn off after 90 days of operation.[4] TRS 1 circled the Earth in a Low Earth orbit.[8]

ERS 5, 6, and 9 (TRS 2-4)

[edit]

Data returned from these three fully successful TRS satellites, circling the Earth in Medium Earth orbits[9][10][11] (within the Van Allen Belts), returned valuable data on the effects of orbital radiation on solar cells. Of significance, it was determined that p-on-n silicon cells deteriorated five times more quickly than n-on-p cells. While protective covers did not affect n-on-p degradation, they were shown to be helpful for the more sensitive p-on-n cells. An unexpected result of the solar cell experiment was that, while it had been observed in ground tests that exposure to radiation of the cells' quartz covers and the epoxy adhesive that held them to the cells reduced the light they transmitted (and thus the power generated) to the cells by 15%, such was not observed in orbit.[12]

TRS 2 and 3 marked the first time two satellites were deployed into orbit simultaneously.[3] Data was obtained by NASA's Minitrack communications network in cooperation with the USAF.[13]

TRS Mk. 2

[edit]
ERS-11, an unflown TRS Mk. 2 prototype, on display at the Steven F. Udvar-Hazy Center
ERS-11, an unflown TRS Mk. 2 prototype, on display at the Steven F. Udvar-Hazy Center

The TRS Mk. 2 design was a tetrahedron measuring 21 cm on a side. Four were produced: ERS-11 through ERS-14, though only two were launched, both pick-a-back with primary USAF payloads.[14] They were designed to operate for one year, at which point, an onboard timer would shut the satellites off.[5]

Name Mass COSPAR ID Launch Reentry Primary satellites Mission Outcome
ERS 11 2.1 kg (4.6 lb)[15][16] Prototype satellite Not launched
ERS 12 (TRS 5)[5] 2.1 kg (4.6 lb)[15] 1963-039B 1963-10-17 Vela 1A, Vela 1B Charged particle research in the magnetosphere Successful
ERS 13 (TRS 6)[5] 2.1 kg (4.6 lb)[17] 1964-040C 1964-07-17 Vela 2A, Vela 2B Charged particle research in the magnetosphere Successful
ERS 14 Not launched

[14]

Flights

[edit]

ERS 12 (TRS 5)

[edit]

Launched into a highly elliptical orbit that took the satellite as high as 103,500 km (64,300 mi) above the Earth and as close as 220 km (140 mi) at perigee,[15] ERS 12 measured the intensity of charged particles in the magnetosphere. Its experiment package detected radiation from all directions, measuring electrons at levels greater than 0.5 and 5 MeV and protons between 10 and 20 eV and 50 to 100 eV.[14] The spacecraft returned data until 1963-10-30.[5]

ERS 13 (TRS 6, "Pygmy")

[edit]

Source:[18]

ERS 13's orbit was similar to that of ERS 12, with a perigee of 250 km (160 mi), but an even higher apogee: 120,317 km (74,762 mi). Spinning once every six seconds, the satellite measured electron and proton levels in the Van Allen Belts with omni-directional radiation detectors—a scintillation counter and a solid-state detector.[17][14][a] The onboard transmitter, with a power of 100 mW could only reach ground stations when ERS 13 was within 40,280 km (25,030 mi) of Earth. The satellite functioned normally until 1964-10-20, when transmission became erratic.[17] The satellite went silent on 1965-01-25.[5]

a (it is possible that ERS 12 and ERS 13 had the same experiments in their packages)

ORS Mk. 1

[edit]

There is no evidence that any Octahedral Research Satellite Mark 1 ever flew.

ORS Mk. 2

[edit]

The ORS Mk. 2 design was an octahedron measuring 23 cm on a side. Five were produced: ORS-1 and ORS-2 (ERS-15 through ERS-16), which carried out cold welding experiments in space on a variety of metal samples, and ERS-23 through ERS-25, classified satellites whose flights may have been cancelled.

Both ERS 15 and 16 used actuators for their cold welding experiments, the first (16) making five metal to metal tests, and the second (15) making eight.[19]

Name Mass COSPAR ID Launch Reentry Primary satellites Mission Outcome
ERS 15 (ORS 1) 4.5 kg (9.9 lb)[20] 1966-077C 1966-08-19 Midas 10,[21] SECOR 7 Cold welding Successful
ERS 16 (ORS 2) 4.5 kg (9.9 lb) [22] 1966-051C 1966-06-09 1967-03-12[22] Midas 11,[21] SECOR 6 Cold welding Successful
ERS 23 Mission cancelled
ERS 24 Mission cancelled
ERS 25 Mission cancelled

[19]

ORS Mk. 3

[edit]
ERS-17, an ORS Mk. 3 satellite
ERS-17, an ORS Mk. 3 satellite

The ORS Mk. 3 design was an octahedron measuring 28 cm on a side. Two were produced: ORS-3 and ORS-4 (ERS-17 and ERS-18).[23]

Name Mass COSPAR ID Launch Reentry Primary satellite Mission Outcome
ERS 17 (ORS 3) 5.5 kg (12 lb)[24] 1965-058C 1965-7-20 1968-07-01 Vela 5, Vela 6[23] Radiation detection Successful
ERS 18 (ORS 4) 9.1 kg (20 lb) [25] 1967-040C 1967-04-28 Vela 7, Vela 7, OV5-1, OV5-3[23] Gamma ray and X ray observation Successful

Flights

[edit]

ERS 17 (ORS 3)

[edit]

Taking advantage of the high-apogee, eccentric orbit of the Vela 3A and Vela 3B satellites, ERS 17 was attached as a "pigmy" satellite, adding negligibly to the payload compared to the Velas launched 20 July 1965 to monitor the Earth for nuclear tests. ERS 17's 112,012 km (69,601 mi) apogee and 207 km (129 mi) perigee orbit took it through Earth's Van Allen Belts, which the satellite was designed to investigate, measuring charged particles, X rays, gamma rays, and cosmic rays in the near-earth environment. Approximately 1500 hours of data were collected by the ERS 17's five radiation detectors until November 3, 1965, when the transmitter ceased.[24][26] Though this was much shorter than the planned lifespan of one year,[27] the satellite had collected a useful data set within the first four weeks of operation.[24] In addition to returning basic scientific data, as well as helping to refine the Vela design by a better understanding of the radiation hazard the satellite series would endure, ERS 17 also monitored for the telltale increase of electron fluxes in the event of nuclear detonations in near space.[27] ERS reentered 1 July 1967.[24]

ERS 18 (ORS 4)

[edit]

The heavier ERS 18,[25] launched with the next set of Vela satellites with the same mission as ERS 17,[27] operated successfully from launch until thirteen months later, on June 3, 1968, when its transmitter was turned off by the onboard timer, as planned.[25] Analysis of returned data indicated that the intensity of gamma rays of energy greater than 1 MeV were higher than would be expected by simply extrapolating from the intensity of gamma rays of less than 1 MeV energy. This suggested an additional, as yet undetermined source of high intensity gamma rays.[28]

As of 8 June 2022, ERS 18 is still in orbit, and its position can be tracked on-line.[29]

OV5

[edit]
OV5-1 satellite
OV5-1 satellite

The design of the OV5 (Orbiting Vehicle 5) series was based on the ORS Mk. 3 design and its vehicles were also given ERS numbers. Nine were produced: OV5-1 through OV5-9.[30] These were very small satellites launched pick-a-back with primary payloads since 1962—a natural fit under the Orbiting Vehicle umbrella. The primary innovation over the earlier ERS series was a command receiver, allowing instructions to be sent from the ground, and a Pulse-code modulation digital telemetry system,[31]: 425  versus the analog transmitters used on prior ERS missions.[24] Like prior ERS, the OV5s were spin-stabilized and heat was passively controlled. All of the OV5 series were built by TRW with the exception of OV5-6, built by AFCRL, and OV5-9, built by Northrop Corporation.[31]: 425 

OV5 Missions

Name Mass COSPAR ID Launch Reentry Primary satellites Mission Outcome
OV5-1 (ERS-27) 6 kg (13 lb) 1967 040E 28 Apr 1967 Materials sciences research Successful
OV5-2 (ERS-28) 10 kg (22 lb) 1968 081B 26 Sep 1968 15 Feb 1971 Radiation studies Successful
OV5-3 (ERS-20) 8.6 kg (19 lb) 1967 040D 28 Apr 1967 Radiation studies Successful
OV5-4 (ERS-21) 12 kg (26 lb) 1968 081C 26 Sep 1968 Heat transfer studies Successful
OV5-5 (ERS-29) 11 kg (24 lb) 1969 046A 23-May-1969 Radiation studies Successful
OV5-6 (ERS-26) 11 kg (24 lb) 1969 046B 23-May-1969 Solar flare studies Successful
OV5-7 Solar studies Cancelled
OV5-8 9 kg (20 lb) 16 Aug 1968 Materials sciences research – materials friction experiment Failed to orbit
OV5-9 13 kg (29 lb) 1969 046C 23 May 1969 Radiation studies – carried low-energy proton detectors, a dE/dx telescope, a Cerenkov counter, a VLF radiation detector, a solar X-ray monitor and a solar flare electron detector to provide further basic research data on solar radiation and its effects on the magnetosphere Successful

[32]

TETR

[edit]
Test and Training Satellite (TTS)

TETR (also known as TTR and TATS, all standing for "Test and Training Satellite") was a series of octahedral ERS satellites which were built to train Apollo program ground station crews for the Manned Space Flight Network.[33] Four were produced: TTR-1 through TTR-4 (ERS-30 through ERS-33)[34] TETR 2 supported training for Apollo missions 8 through 13 despite a faulty battery pack. TETR C failed to orbit due to a failure in the launch vehicle.[35]

Name Mass COSPAR ID Launch Reentry Primary satellite Mission Outcome
ERS 30 (TTS 1, TETR 1) 20 kg (44 lb)[36] 1967-123B 1967-12-13 1968-04-28 Pioneer 8 Communications Successful
ERS 31 (TTS 2, TETR 2) 40 kg (88 lb)[37] 1968-100B 1968-11-08 1979-09-19 Pioneer 9 Communications Successful
ERS 32 (TTS 3, TETR 3) TETR-C 1969-08-27[38] Pioneer E Communications Launch failure
ERS 33 (TTS 4, TETR 4) 20.4 kg (45 lb)[39] 1971-083B 1971-09-29 1978-09-19 OSO 7 Communications Successful

[34]

References

[edit]
  1. ^ a b c d Krebs, Gunter D. "TRS Mk. 1 (ERS)". Gunter's Space Page. Retrieved 25 October 2021.
  2. ^ Wade, Mark. "ERS". www.astronautix.com. Archived from the original on December 27, 2016. Retrieved 8 November 2021.
  3. ^ a b c d Andrew LePage (2014-05-18). "Vintage Micro The Original Picosatellite". Drew ex Machina. Retrieved 2022-03-12.
  4. ^ a b c Thomas L. Branigan, ed. (December 1962). TRW Space Log. Vol. 2. Redondo Beach, CA: TRW. p. 45.
  5. ^ a b c d e f g h i j William R. Corliss (1967). Scientific Satellites. Washington D.C.: Science and Technical Information Division, Office of Technology Utilization, NASA. p. 714. Retrieved 2022-03-12.
  6. ^ "Astronautical and Aeronautical Events of 1962" (PDF). NASA. 1963. p. 236. Archived from the original (PDF) on 2013-03-04. Retrieved 2022-04-11.
  7. ^ a b c d e f McDowell, Jonathan. "Satellite Catalog". Jonathon's Space Report. Retrieved 2022-03-12.
  8. ^ "ERS 2". NASA. Retrieved 2022-03-12.
  9. ^ "ERS 5". NASA. Retrieved 2022-03-12.
  10. ^ "ERS 6". NASA. Retrieved 2022-03-12.
  11. ^ "ERS 9". NASA. Retrieved 2022-03-12.
  12. ^ John B. Rittenhouse (January 1966). Space Materials Handbook: Space Materials Experience. Supplement 1, to the 2d. ed. NASA. pp. s-67 – s-68.
  13. ^ "Astronautical and Aeronatical Events of 1963" (PDF). NASA. 1964. p. 346.
  14. ^ a b c d Krebs, Gunter D. "TRS Mk. 2 (ERS)". Gunter's Space Page. Retrieved 25 October 2021.
  15. ^ a b c "ERS 12". NASA. Retrieved 2022-03-31.
  16. ^ Rogerio Atem de Carvalho; Jaime Estela; Martin Langer, eds. (2020). "1.3". Nanosatellites: Space and Ground Technologies, Operations and Economics. Hoboken, NJ: Wiley. ISBN 9781119042068. OCLC 1126347525.
  17. ^ a b c "ERS 13". NASA. Retrieved 2022-03-31.
  18. ^ "Astronautical and Aeronautical Events of 1964" (PDF). nasa. 1965. p. 252.
  19. ^ a b Krebs, Gunter D. "ORS Mk.2 (ERS)". Gunter's Space Page. Retrieved 25 October 2021.
  20. ^ "ERS 15". NASA. Retrieved 2022-04-30.
  21. ^ a b Wade, Mark, Encyclopedia Astronautica Midas Archived 2010-11-20 at the Wayback Machine
  22. ^ a b "ERS 16". NASA. Retrieved 2022-04-30.
  23. ^ a b c Krebs, Gunter D. "ORS Mk.3 (ERS)". Gunter's Space Page. Retrieved 25 October 2021.
  24. ^ a b c d e "ERS 17". NASA. Retrieved 2022-06-08.
  25. ^ a b c "ERS 18". NASA. Retrieved 2022-06-08.
  26. ^ "U.S. Sends Three Satellites into Orbit". Dayton Daily News. 1965-07-20.
  27. ^ a b c "ERS 17 & 18". UCSD High Energy Astrophysics group. Retrieved 2022-06-08.
  28. ^ "A New Component of Gamma Rays Above One MEV Observed By The ERS-18 Satellite". Scientific and Technical Aerospace Reports. 8 (13). NASA: 2473–2474. 1968. Retrieved 2022-06-08.
  29. ^ "ERS 18". Retrieved 8 June 2022.
  30. ^ Krebs, Gunter D. "OV5 (ERS)". Gunter's Space Page. Retrieved 25 October 2021.
  31. ^ a b Powell, Joel W.; Richards, G.R. (1987). "The Orbiting Vehicle Series of Satellites". Journal of the British Interplanetary Society. Vol. 40. London: British Interplanetary Society.
  32. ^ Heyman, Jos (2005-04-12). "OV". Directory of U.S. Military Rockets and Missiles. Designation Systems. Retrieved February 15, 2020.
  33. ^ Ezell, Linda Neuman (1988). NASA Historical Data Book: Programs and projects, 1969-1978. Scientific and Technical Information Division, National Aeronautics and Space Administration. p. 402.
  34. ^ a b Krebs, Gunter D. "TTS, TETR (ERS)". Gunter's Space Page. Retrieved 26 October 2021.
  35. ^ "TETR-2 Is Successful Despite Faulty Battery Pack" (PDF). Technical Information Bulletin: The Manned Spaceflight Network. 8 (3). 26 February 1971. Retrieved 13 December 2021.
  36. ^ "TETR 1". NASA. Retrieved 2022-06-08.
  37. ^ "TETR 2". NASA. Retrieved 2022-06-08.
  38. ^ "TETR-C". NASA. Retrieved 2022-06-08.
  39. ^ "TETR 4". NASA. Retrieved 2022-06-08.