Draft:Radio communication
This is a draft article. It is a work in progress open to editing by anyone. Please ensure core content policies are met before publishing it as a live Wikipedia article. Find sources: Google (books · news · scholar · free images · WP refs) · FENS · JSTOR · TWL Last edited by KylieTastic (talk | contribs) 4 months ago. (Update)
Finished drafting? or |
Radio communication or just radio is the use of radio waves for telecommunication.[1][2][3] Applications include radio broadcasting (audio) and television broadcasting, cell phones, two-way radios, wireless networking, and satellite communication, among numerous other uses.
Radio waves are electromagnetic waves of frequency between 3 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves. They are received by another antenna connected to a radio receiver. Radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter.
The existence of radio waves was first proven by German physicist Heinrich Hertz on 11 November 1886.[4] In the mid-1890s, building on techniques physicists were using to study electromagnetic waves, Guglielmo Marconi developed the first apparatus for long-distance radio communication,[5] sending a wireless Morse Code message to a recipient over a kilometer away in 1895,[6] and the first transatlantic signal on 12 December 1901.[7] The first commercial radio broadcast was transmitted on 2 November 1920, when the live returns of the Harding-Cox presidential election were broadcast by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA.[8]
Etymology
[edit]The word "radio" is derived from the Latin word "radius", meaning "spoke of a wheel, beam of light, ray". It was first applied to communications in 1881 when, at the suggestion of French scientist Ernest Mercadier , Alexander Graham Bell adopted "radiophone" (meaning "radiated sound") as an alternate name for his photophone optical transmission system.[9][10]
Following Heinrich Hertz's discovery of the existence of radio waves in 1886, the term "Hertzian waves" was initially used for this radiation.[11] The first practical radio communications systems, developed by Guglielmo Marconi in 1894–1895, transmitted telegraph signals by radio waves,[4] so radio communication was first called "wireless telegraphy". Up until about 1910 the term "wireless telegraphy" also included a variety of other experimental systems for transmitting telegraph signals without wires, including electrostatic induction, electromagnetic induction and aquatic and earth conduction, so there was a need for a more precise term referring exclusively to electromagnetic radiation.[12][13]
The French physicist Édouard Branly, who in 1890 developed the radio wave detecting coherer, called it in French a radio-conducteur.[14][15] The radio- prefix was later used to form additional descriptive compound and hyphenated words, especially in Europe. For example, in early 1898 the British publication The Practical Engineer included a reference to "the radiotelegraph" and "radiotelegraphy".[14][16]
The use of "radio" as a standalone word dates back to at least 30 December 1904, when instructions issued by the British Post Office for transmitting telegrams specified that "The word 'Radio'... is sent in the Service Instructions."[14][17] This practice was universally adopted, and the word "radio" introduced internationally, by the 1906 Berlin Radiotelegraphic Convention, which included a Service Regulation specifying that "Radiotelegrams shall show in the preamble that the service is 'Radio'".[14]
The switch to "radio" in place of "wireless" took place slowly and unevenly in the English-speaking world. Lee de Forest helped popularize the new word in the United States—in early 1907, he founded the DeForest Radio Telephone Company, and his letter in the 22 June 1907 Electrical World about the need for legal restrictions warned that "Radio chaos will certainly be the result until such stringent regulation is enforced."[18] The United States Navy would also play a role. Although its translation of the 1906 Berlin Convention used the terms "wireless telegraph" and "wireless telegram", by 1912 it began to promote the use of "radio" instead. The term started to become preferred by the general public in the 1920s with the introduction of broadcasting.
History
[edit]Electromagnetic waves were predicted by James Clerk Maxwell in his 1873 theory of electromagnetism, now called Maxwell's equations, who proposed that a coupled oscillating electric field and magnetic field could travel through space as a wave, and proposed that light consisted of electromagnetic waves of short wavelength. On 11 November 1886, German physicist Heinrich Hertz, attempting to confirm Maxwell's theory, first observed radio waves he generated using a primitive spark gap transmitter.[4] Experiments by Hertz and physicists Jagadish Chandra Bose, Oliver Lodge, Lord Rayleigh, and Augusto Righi, among others, showed that radio waves like light demonstrated reflection, refraction, diffraction, polarization, standing waves, and traveled at the same speed as light, confirming that both light and radio waves were electromagnetic waves, differing only in frequency.[19] In 1895, Guglielmo Marconi developed the first radio communication system, using a spark gap transmitter to send Morse code over long distances. By December 1901, he had transmitted across the Atlantic ocean.[4][5][6][7] Marconi and Karl Ferdinand Braun shared the 1909 Nobel Prize in Physics "for their contributions to the development of wireless telegraphy".[20]
During radio's first two decades, called the radiotelegraphy era, the primitive damped wave radio transmitters could only transmit pulses of radio waves, not the continuous waves which were needed for audio modulation, so radio was used for person-to-person commercial, diplomatic and military text messaging. Starting around 1908 industrial countries built worldwide networks of powerful transoceanic spark transmitters to exchange telegram traffic between continents and communicate with their colonies and naval fleets. During World War 1 the development of continuous wave radio transmitters, rectifying electrolytic, and crystal radio receiver detectors enabled amplitude modulation (AM) radiotelephony to be achieved by Reginald Fessenden and others, allowing sound (audio) to be transmitted. On 2 November 1920, the first commercial radio broadcast was transmitted by Westinghouse Electric and Manufacturing Company in Pittsburgh, under the call sign KDKA featuring live coverage of the Harding-Cox presidential election.[8]
Principle
[edit]Radio waves are radiated by electric charges undergoing acceleration.[21][22] They are generated artificially by time varying electric currents, consisting of electrons flowing back and forth in a metal conductor called an antenna.[23][24]
As they travel farther from the transmitting antenna, radio waves spread out so their signal strength (intensity in watts per square meter) decreases, so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, the antenna radiation pattern, receiver sensitivity, noise level, and presence of obstructions between transmitter and receiver. An omnidirectional antenna transmits or receives radio waves in all directions, while a directional antenna or high-gain antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction.[25][26]
Radio waves travel at the speed of light in vacuum.[27][28]
The other types of electromagnetic waves besides radio waves, infrared, visible light, ultraviolet, X-rays and gamma rays, can also carry information and be used for communication. The wide use of radio waves for telecommunication is mainly due to their desirable propagation properties stemming from their large wavelength.[24]
In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent is converted by some type of transducer to a time-varying electrical signal called the modulation signal.[24][29] The modulation signal may be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal consisting of a sequence of bits representing binary data from a computer. The modulation signal is applied to a radio transmitter. In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to "carry" the information through the air. The information signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information on the carrier. Different radio systems use different modulation methods:[30]
- AM (amplitude modulation) – in an AM transmitter, the amplitude (strength) of the radio carrier wave is varied by the modulation signal;[30]: 3
- FM (frequency modulation) – in an FM transmitter, the frequency of the radio carrier wave is varied by the modulation signal;[30]: 33
- FSK (frequency-shift keying) – used in wireless digital devices to transmit digital signals, the frequency of the carrier wave is shifted between frequencies.[30]: 58
- OFDM (orthogonal frequency-division multiplexing) – a family of digital modulation methods widely used in high bandwidth systems such as Wi-Fi networks, cellphones, digital television broadcasting, and digital audio broadcasting (DAB) to transmit digital data using a minimum of radio spectrum bandwidth. It has higher spectral efficiency and more resistance to fading than AM or FM. In OFDM, multiple radio carrier waves closely spaced in frequency are transmitted within the radio channel, with each carrier modulated with bits from the incoming bitstream so multiple bits are being sent simultaneously, in parallel. At the receiver, the carriers are demodulated and the bits are combined in the proper order into one bitstream.[31]
Many other types of modulation are also used. In some types, a carrier wave is not transmitted but just one or both modulation sidebands.[32]
The modulated carrier is amplified in the transmitter and applied to a transmitting antenna which radiates the energy as radio waves. The radio waves carry the information to the receiver location.[33] At the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna which is a weaker replica of the current in the transmitting antenna.[24][29] This voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. The modulation signal is converted by a transducer back to a human-usable form: an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users.[30]
The radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter's radio waves oscillate at a different rate, in other words, each transmitter has a different frequency, measured in hertz (Hz), kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The receiving antenna typically picks up the radio signals of many transmitters. The receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna and reject the others. A tuned circuit (also called resonant circuit or tank circuit) acts like a resonator, similar to a tuning fork.[29] It has a natural resonant frequency at which it oscillates. The resonant frequency of the receiver's tuned circuit is adjusted by the user to the frequency of the desired radio station; this is called "tuning". The oscillating radio signal from the desired station causes the tuned circuit to resonate, oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on.[34]
Spectrum
[edit]The radio spectrum, the total range of radio frequencies that can be used in a given area, is a limited resource.[35][3] Each radio transmission occupies a portion of the total bandwidth available. Radio spectrum is regarded as an economic good which has a monetary cost and is in increasing demand. In some parts of the radio spectrum, the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. So there is an incentive to employ technology to minimize the bandwidth used by radio services.[36]
Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum (ultra-wideband) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio.[36]
ITU frequency bands
[edit]The ITU arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10n) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength.[3][37] Each of these bands has a traditional name:[38]
Band name Abbreviation Frequency Wavelength Extremely
low frequencyELF 3–30 Hz 100,000–
10,000 kmSuper
low frequencySLF 30–300 Hz 10,000 –
1,000 kmUltra
low frequencyULF 300–
3,000 Hz1,000–
100 kmVery
low frequencyVLF 3–30 kHz 100–10 km Low
frequencyLF 30–300 kHz 10–1 km Medium
frequencyMF 300–
3,000 kHz1,000–
100 m
Band name Abbreviation Frequency Wavelength High
frequencyHF 3–30 MHz 100–10 m Very
high frequencyVHF 30–300 MHz 10–1 m Ultra
high frequencyUHF 300–
3,000 MHz100–10 cm Super
high frequencySHF 3–30 GHz 10–1 cm Extremely
high frequencyEHF 30–300 GHz 10–1 mm Tremendously
high frequencyTHF 300–3,000 GHz
(0.3–3.0 THz)1.0–0.1 mm
It can be seen that the bandwidth, the range of frequencies, contained in each band is not equal but increases exponentially as the frequency increases; each band contains ten times the bandwidth of the preceding band.[39]
The term "tremendously low frequency" (TLF) has been used for wavelengths from 1–3 Hz (300,000–100,000 km),[40] but the term has not been defined by the ITU.[38]
Bandwidth
[edit]A modulated radio wave, carrying an information signal, occupies a range of frequencies. The information (modulation) in a radio signal is usually concentrated in narrow frequency bands called sidebands (SB) just above and below the carrier frequency. The width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth (BW).[30][35] For any given signal-to-noise ratio, an amount of bandwidth can carry the same amount of information (data rate in bits per second) regardless of where in the radio frequency spectrum it is located, so bandwidth is a measure of information-carrying capacity. The bandwidth required by a radio transmission depends on the data rate of the information (modulation signal) being sent, and the spectral efficiency of the modulation method used; how much data it can transmit in each kilohertz of bandwidth. Different types of information signals carried by radio have different data rates. For example, a television (video) signal has a greater data rate than an audio signal.[30][36]
A slow transition from analog to digital radio transmission technologies began in the late 1990s.[41][42] Part of the reason for this is that digital modulation can often transmit more information (a greater data rate) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. Other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation.[30]
Regulation
[edit]The airwaves are a resource shared by many users. Two radio transmitters in the same area that attempt to transmit on the same frequency will interfere with each other, causing garbled reception, so neither transmission may be received clearly.[35] Interference with radio transmissions can not only have a large economic cost, but it can also be life-threatening (for example, in the case of interference with emergency communications or air traffic control).[43][44]
To prevent interference between different users, the emission of radio waves is strictly regulated by national laws, coordinated by an international body, the International Telecommunication Union (ITU), which allocates bands in the radio spectrum for different uses.[35][3] Radio transmitters must be licensed by governments, under a variety of license classes depending on use, and are restricted to certain frequencies and power levels. In some classes, such as radio and television broadcasting stations, the transmitter is given a unique identifier consisting of a string of letters and numbers called a call sign, which must be used in all transmissions.[45] In order to adjust, maintain, or internally repair radiotelephone transmitters, individuals must hold a government license, such as the general radiotelephone operator license in the US, obtained by taking a test demonstrating adequate technical and legal knowledge of safe radio operation.[46]
Exceptions to the above rules allow the unlicensed operation by the public of low power short-range transmitters in consumer products such as cell phones, cordless phones, wireless devices, walkie-talkies, citizens band radios, wireless microphones, garage door openers, and baby monitors. In the US, these fall under Part 15 of the Federal Communications Commission (FCC) regulations. Many of these devices use the ISM bands, a series of frequency bands throughout the radio spectrum reserved for unlicensed use. Although they can be operated without a license, like all radio equipment these devices generally must be type-approved before the sale.[47]
Applications
[edit]Below are some of the most important uses of radio communication, organized by function.
Broadcasting
[edit]Broadcasting is the one-way transmission of information from a transmitter to receivers belonging to a public audience.[48] Since the radio waves become weaker with distance, a broadcasting station can only be received within a limited distance of its transmitter.[49] Systems that broadcast from satellites can generally be received over an entire country or continent. Older terrestrial radio and television are paid for by commercial advertising or governments. In subscription systems like satellite television and satellite radio the customer pays a monthly fee. In these systems, the radio signal is encrypted and can only be decrypted by the receiver, which is controlled by the company and can be deactivated if the customer does not pay.[50]
Broadcasting uses several parts of the radio spectrum, depending on the type of signals transmitted and the desired target audience. Longwave and medium wave signals can give reliable coverage of areas several hundred kilometers across, but have a more limited information-carrying capacity and so work best with audio signals (speech and music), and the sound quality can be degraded by radio noise from natural and artificial sources. The shortwave bands have a greater potential range but are more subject to interference by distant stations and varying atmospheric conditions that affect reception.[51][52]
In the very high frequency band, greater than 30 megahertz, the Earth's atmosphere has less of an effect on the range of signals, and line-of-sight propagation becomes the principal mode. These higher frequencies permit the great bandwidth required for television broadcasting. Since natural and artificial noise sources are less present at these frequencies, high-quality audio transmission is possible, using frequency modulation.[53][54]
Broadcast frequencies are:
- Longwave AM Radio = 148.5 kHz – 283.5 kHz (LF)
- Mediumwave AM Radio = 520 kHz – 1700 kHz (MF)
- Shortwave AM Radio = 3 MHz – 30 MHz (HF)
Designations for television and FM radio broadcast frequencies vary between countries, see Television channel frequencies and FM broadcast band. Since VHF and UHF frequencies are desirable for many uses in urban areas, in North America some parts of the former television broadcasting band have been reassigned to cellular phone and various land mobile communications systems. Even within the allocation still dedicated to television, TV-band devices use channels without local broadcasters.
The Apex band in the United States was a pre-WWII allocation for VHF audio broadcasting; it was made obsolete after the introduction of FM broadcasting.
Audio: Radio broadcasting
[edit]Radio broadcasting means transmission of audio (sound) to radio receivers belonging to a public audience. Analog audio is the earliest form of radio broadcast. AM broadcasting began around 1920. FM broadcasting was introduced in the late 1930s with improved fidelity. A broadcast radio receiver is called a radio. Most radios can receive both AM and FM.[55]
- AM (amplitude modulation) – in AM, the amplitude (strength) of the radio carrier wave is varied by the audio signal. AM broadcasting, the oldest broadcasting technology, is allowed in the AM broadcast bands, between 148–283 kHz in the low frequency (LF) band for longwave broadcasts and between 526–1706 kHz in the medium frequency (MF) band for medium-wave broadcasts.[56] Because waves in these bands travel as ground waves following the terrain, AM radio stations can be received beyond the horizon at hundreds of miles distance, but AM has lower fidelity than FM. Radiated power (ERP) of AM stations in the US is usually limited to a maximum of 10 kW, although a few (clear-channel stations) are allowed to transmit at 50 kW. AM stations broadcast in monaural audio; AM stereo broadcast standards exist in most countries, but the radio industry has failed to upgrade to them, due to lack of demand.[57]
- Shortwave broadcasting – AM broadcasting is also allowed in the shortwave bands by legacy radio stations. Since radio waves in these bands can travel intercontinental distances by reflecting off the ionosphere using skywave or "skip" propagation, shortwave is used by international stations, broadcasting to other countries.[57][58]
- FM (frequency modulation) – in FM the frequency of the radio carrier signal is varied slightly by the audio signal. FM broadcasting is permitted in the FM broadcast bands between about 65 and 108 MHz in the very high frequency (VHF) range. Radio waves in this band travel by line-of-sight so FM reception is limited by the visual horizon to about 30–40 miles (48–64 km), and can be blocked by hills. However it is less susceptible to interference from radio noise (RFI, sferics, static), and has higher fidelity, better frequency response, and less audio distortion than AM. In the US, radiated power (ERP) of FM stations varies from 6–100 kW.[59]
- Digital radio involves a variety of standards and technologies for broadcasting digital radio signals over the air. Some systems, such as HD Radio and DRM, operate in the same wavebands as analog broadcasts, either as a replacement for analog stations or as a complementary service. Others, such as DAB/DAB+ and ISDB_Tsb, operate in wavebands traditionally used for television or satellite services.[60]
- Digital Audio Broadcasting (DAB) debuted in some countries in 1998. It transmits audio as a digital signal rather than an analog signal as AM and FM do.[61] DAB has the potential to provide higher quality sound than FM (although many stations do not choose to transmit at such high quality), has greater immunity to radio noise and interference, makes better use of scarce radio spectrum bandwidth and provides advanced user features such as electronic program guides. Its disadvantage is that it is incompatible with previous radios so that a new DAB receiver must be purchased.[62] Several nations have set dates to switch off analog FM networks in favor of DAB / DAB+, notably Norway in 2017[63] and Switzerland in 2024.[64]
- A single DAB station transmits a 1,500 kHz bandwidth signal that carries from 9–12 channels of digital audio modulated by OFDM from which the listener can choose. Broadcasters can transmit a channel at a range of different bit rates, so different channels can have different audio quality. In different countries DAB stations broadcast in either Band III (174–240 MHz) or L band (1.452–1.492 GHz) in the UHF range, so like FM reception is limited by the visual horizon to about 40 miles (64 km).[65][62]
- HD Radio is an alternative digital radio standard widely implemented in North America.[66] An in-band on-channel technology, HD Radio broadcasts a digital signal in a subcarrier of a station's analog FM or AM signal. Stations are able to multicast more than one audio signal in the subcarrier, supporting the transmission of multiple audio services at varying bitrates.[67] The digital signal is transmitted using OFDM with the HDC (High-Definition Coding) proprietary audio compression format. HDC is based on, but not compatible with, the MPEG-4 standard HE-AAC.[68] It uses a modified discrete cosine transform (MDCT) audio data compression algorithm.[69]
- Digital Radio Mondiale (DRM) is a competing digital terrestrial radio standard developed mainly by broadcasters as a higher spectral efficiency replacement for legacy AM and FM broadcasting. Mondiale means "worldwide" in French and Italian; DRM was developed in 2001, and is currently supported by 23 countries, and adopted by some European and Eastern broadcasters beginning in 2003. The DRM30 mode uses the commercial broadcast bands below 30 MHz, and is intended as a replacement for standard AM broadcast on the longwave, mediumwave, and shortwave bands. The DRM+ mode uses VHF frequencies centered around the FM broadcast band, and is intended as a replacement for FM broadcasting. It is incompatible with existing radio receivers, so it requires listeners to purchase a new DRM receiver. The modulation used is a form of OFDM called COFDM in which, up to 4 carriers are transmitted on a channel formerly occupied by a single AM or FM signal, modulated by quadrature amplitude modulation (QAM).[70][58]
- Satellite radio is a subscription radio service that broadcasts CD quality digital audio direct to subscribers' receivers using a microwave downlink signal from a direct broadcast communication satellite in geostationary orbit 22,000 miles (35,000 km) above the Earth. It is mostly intended for radios in vehicles. Satellite radio uses the 2.3 GHz S band in North America, in other parts of the world, it uses the 1.4 GHz L band allocated for DAB.[71][72]
Video: Television broadcasting
[edit]Television broadcasting is the transmission of moving images by radio, which consist of sequences of still images, which are displayed on a screen on a television receiver (a "television" or TV) along with a synchronized audio (sound) channel. Television (video) signals occupy a wider bandwidth than broadcast radio (audio) signals. Analog television, the original television technology, required 6 MHz, so the television frequency bands are divided into 6 MHz channels, now called "RF channels".[73]
The current television standard, introduced beginning in 2006, is a digital format called high-definition television (HDTV), which transmits pictures at higher resolution, typically 1080 pixels high by 1920 pixels wide, at a rate of 25 or 30 frames per second. Digital television (DTV) transmission systems, which replaced older analog television in a transition beginning in 2006, use image compression and high-efficiency digital modulation such as OFDM and 8VSB to transmit HDTV video within a smaller bandwidth than the old analog channels, saving scarce radio spectrum space. Therefore, each of the 6 MHz analog RF channels now carries up to 7 DTV channels – these are called "virtual channels". Digital television receivers have different behavior in the presence of poor reception or noise than analog television, called the "digital cliff" effect. Unlike analog television, in which increasingly poor reception causes the picture quality to gradually degrade, in digital television picture quality is not affected by poor reception until, at a certain point, the receiver stops working and the screen goes black.[74][75]
- Terrestrial television, over-the-air (OTA) television, or broadcast television – the oldest television technology, is the transmission of television signals from land-based television stations to television receivers (called televisions or TVs) in viewer's homes. Terrestrial television broadcasting uses the bands 41 – 88 MHz (VHF low band or Band I, carrying RF channels 1–6), 174 – 240 MHz, (VHF high band or Band III; carrying RF channels 7–13), and 470 – 614 MHz (UHF Band IV and Band V; carrying RF channels 14 and up).[76] The exact frequency boundaries vary in different countries.[77] Propagation is by line-of-sight, so reception is limited by the visual horizon.[78] In the US, the effective radiated power (ERP) of television transmitters is regulated according to height above average terrain.[79] Viewers closer to the television transmitter can use a simple "rabbit ears" dipole antenna on top of the TV, but viewers in fringe reception areas typically require an outdoor antenna mounted on the roof to get adequate reception.[78]
- Satellite television – a set-top box which receives subscription direct-broadcast satellite television, and displays it on an ordinary television. A direct broadcast satellite in geostationary orbit 22,200 miles (35,700 km) above the Earth's equator transmits many channels (up to 900) modulated on a 12.2 to 12.7 GHz Ku band microwave downlink signal to a rooftop satellite dish antenna on the subscriber's residence. The microwave signal is converted to a lower intermediate frequency at the dish and conducted into the building by a coaxial cable to a set-top box connected to the subscriber's TV, where it is demodulated and displayed. The subscriber pays a monthly fee.[80][81]
Time
[edit]Government standard frequency and time signal services operate time radio stations which continuously broadcast extremely accurate time signals produced by atomic clocks, as a reference to synchronize other clocks.[82] Examples are BPC, DCF77, JJY, MSF, RTZ, TDF, WWV, and YVTO.[83] One use is in radio clocks and watches, which include an automated receiver that periodically (usually weekly) receives and decodes the time signal and resets the watch's internal quartz clock to the correct time, thus allowing a small watch or desk clock to have the same accuracy as an atomic clock. Government time stations are declining in number because GPS satellites and the Internet Network Time Protocol (NTP) provide equally accurate time standards.[84]
Two-way voice communication
[edit]A two-way radio is an audio transceiver, a receiver and transmitter in the same device, used for bidirectional person-to-person voice communication with other users with similar radios. An older term for this mode of communication is radiotelephony. The radio link may be half-duplex, as in a walkie-talkie, using a single radio channel in which only one radio can transmit at a time, so different users take turns talking, pressing a "push to talk" button on their radio which switches off the receiver and switches on the transmitter. Or the radio link may be full duplex, a bidirectional link using two radio channels so both people can talk at the same time, as in a cell phone.[85]
- Cell phone – a portable wireless telephone that is connected to the telephone network by radio signals exchanged with a local antenna at a cellular base station (cell tower).[86] The service area covered by the provider is divided into small geographical areas called "cells", each served by a separate base station antenna and multichannel transceiver. All the cell phones in a cell communicate with this antenna on separate frequency channels, assigned from a common pool of frequencies. The purpose of cellular organization is to conserve radio bandwidth by frequency reuse. Low power transmitters are used so the radio waves used in a cell do not travel far beyond the cell, allowing the same frequencies to be reused in geographically separated cells. When a user carrying a cellphone crosses from one cell to another, his phone is automatically "handed off" seamlessly to the new antenna and assigned new frequencies. Cellphones have a highly automated full duplex digital transceiver using OFDM modulation using two digital radio channels, each carrying one direction of the bidirectional conversation, as well as a control channel that handles dialing calls and "handing off" the phone to another cell tower. Older 2G, 3G, and 4G networks use frequencies in the UHF and low microwave range, between 700 MHz and 3 GHz. The cell phone transmitter adjusts its power output to use the minimum power necessary to communicate with the cell tower; 0.6 W when near the tower, up to 3 W when farther away. Cell tower channel transmitter power is 50 W. Current generation phones, called smartphones, have many functions besides making telephone calls, and therefore have several other radio transmitters and receivers that connect them with other networks: usually a Wi-Fi modem, a Bluetooth modem, and a GPS receiver.[87][88][89]
- 5G cellular network – next-generation cellular networks which began deployment in 2019. Their major advantage is much higher data rates than previous cellular networks, up to 10 Gbps; 100 times faster than the previous cellular technology, 4G LTE. The higher data rates are achieved partly by using higher frequency radio waves, in the higher microwave band 3–6 GHz, and millimeter wave band, around 28 and 39 GHz. Since these frequencies have a shorter range than previous cellphone bands, the cells will be smaller than the cells in previous cellular networks which could be many miles across. Millimeter-wave cells will only be a few blocks long, and instead of a cell base station and antenna tower, they will have many small antennas attached to utility poles and buildings.[90][91]
- Satellite phone (satphone) – a portable wireless telephone similar to a cell phone, connected to the telephone network through a radio link to an orbiting communications satellite instead of through cell towers. They are more expensive than cell phones; but their advantage is that, unlike a cell phone which is limited to areas covered by cell towers, satphones can be used over most or all of the geographical area of the Earth. In order for the phone to communicate with a satellite using a small omnidirectional antenna, first-generation systems use satellites in low Earth orbit, about 400–700 miles (640–1,100 km) above the surface. With an orbital period of about 100 minutes, a satellite can only be in view of a phone for about 4 – 15 minutes, so the call is "handed off" to another satellite when one passes beyond the local horizon. Therefore, large numbers of satellites, about 40 to 70, are required to ensure that at least one satellite is in view continuously from each point on Earth. Other satphone systems use satellites in geostationary orbit in which only a few satellites are needed, but these cannot be used at high latitudes because of terrestrial interference.[92][93]
- Cordless phone – a landline telephone in which the handset is portable and communicates with the rest of the phone by a short-range full duplex radio link, instead of being attached by a cord. Both the handset and the base station have low-power radio transceivers that handle the short-range bidirectional radio link.[94] As of 2022[update], cordless phones in most nations use the DECT transmission standard.[95]
- Land mobile radio system – short-range mobile or portable half-duplex radio transceivers operating in the VHF or UHF band that can be used without a license. They are often installed in vehicles, with the mobile units communicating with a dispatcher at a fixed base station. Special systems with reserved frequencies are used by first responder services; police, fire, ambulance, and emergency services, and other government services. Other systems are made for use by commercial firms such as taxi and delivery services. VHF systems use channels in the range 30–50 MHz and 150–172 MHz. UHF systems use the 450–470 MHz band and in some areas the 470–512 MHz range. In general, VHF systems have a longer range than UHF but require longer antennas. AM or FM modulation is mainly used, but digital systems such as DMR are being introduced. The radiated power is typically limited to 4 watts.[86] These systems have a fairly limited range, usually 3 to 20 miles (4.8 to 32 km) depending on terrain. Repeaters installed on tall buildings, hills, or mountain peaks are often used to increase the range when it is desired to cover a larger area than line-of-sight. Examples of land mobile systems are CB, FRS, GMRS, and MURS. Modern digital systems, called trunked radio systems, have a digital channel management system using a control channel that automatically assigns frequency channels to user groups.[96]
- Walkie-talkie – a battery-powered portable handheld half-duplex two-way radio, used in land mobile radio systems.[97]
- Airband – Half-duplex radio system used by aircraft pilots to talk to other aircraft and ground-based air traffic controllers. This vital system is the main communication channel for air traffic control. For most communication in overland flights in air corridors a VHF-AM system using channels between 108 and 137 MHz in the VHF band is used. This system has a typical transmission range of 200 miles (320 km) for aircraft flying at cruising altitude.[98][99] For flights in more remote areas, such as transoceanic airline flights, aircraft use the HF band or channels on the Inmarsat or Iridium satphone satellites.[100] Military aircraft also use a dedicated UHF-AM band from 225.0 to 399.95 MHz.[101]
- Marine radio – medium-range transceivers on ships, used for ship-to-ship, ship-to-air, and ship-to-shore communication with harbormasters They use FM channels between 156 and 174 MHz in the VHF band with up to 25 watts power, giving them a range of about 60 miles (97 km). Some channels are half-duplex and some are full-duplex, to be compatible with the telephone network, to allow users to make telephone calls through a marine operator.[102]
- Amateur radio – long-range half-duplex two-way radio used by hobbyists for non-commercial purposes: recreational radio contacts with other amateurs, volunteer emergency communication during disasters, contests, and experimentation. Radio amateurs must hold an amateur radio license and are given a unique callsign that must be used as an identifier in transmissions. Amateur radio is restricted to small frequency bands, the amateur radio bands, spaced throughout the radio spectrum starting at 136 kHz. Within these bands, amateurs are allowed the freedom to transmit on any frequency using a wide variety of voice modulation methods, along with other forms of communication, such as slow-scan television (SSTV), and radioteletype (RTTY). Additionally, amateurs are among the only radio operators still using Morse code radiotelegraphy.[103]
Air band
[edit]Airband refers to VHF frequencies 108 to 137 MHz, used for navigation and voice communication with aircraft. Trans-oceanic aircraft also carry HF radio and satellite transceivers.
Marine band
[edit]The greatest incentive for development of radio was the need to communicate with ships out of visual range of shore. From the very early days of radio, large oceangoing vessels carried powerful long-wave and medium-wave transmitters. High-frequency allocations are still designated for ships, although satellite systems have taken over some of the safety applications previously served by 500 kHz and other frequencies. 2182 kHz is a medium-wave frequency still used for marine emergency communication.
Marine VHF radio is used in coastal waters and relatively short-range communication between vessels and to shore stations. Radios are channelized, with different channels used for different purposes; marine Channel 16 is used for calling and emergencies.
Amateur radio frequencies
[edit]Amateur radio frequency allocations vary around the world. Several bands are common for amateurs worldwide, usually in the HF part of the spectrum. Other bands are national or regional allocations only due to differing allocations for other services, especially in the VHF and UHF parts of the radio spectrum.
Citizens' band and personal radio services
[edit]Citizens' band radio is allocated in many countries, using channelized radios in the upper HF part of the spectrum (around 27 MHz). It is used for personal, small business and hobby purposes. Other frequency allocations are used for similar services in different jurisdictions, for example UHF CB is allocated in Australia. A wide range of personal radio services exist around the world, usually emphasizing short-range communication between individuals or for small businesses, simplified license requirements or in some countries covered by a class license, and usually FM transceivers using around 1 watt or less.
Land mobile bands
[edit]Bands of frequencies, especially in the VHF and UHF parts of the spectrum, are allocated for communication between fixed base stations and land mobile vehicle-mounted or portable transceivers. In the United States these services are informally known as business band radio. See also Professional mobile radio.
Police radio and other public safety services such as fire departments and ambulances are generally found in the VHF and UHF parts of the spectrum. Trunking systems are often used to make most efficient use of the limited number of frequencies available.
The demand for mobile telephone service has led to large blocks of radio spectrum allocated to cellular frequencies.
One-way voice communication
[edit]One way, unidirectional radio transmission is called simplex.
- Baby monitor – a crib-side appliance for parents of infants that transmits the baby's sounds to a receiver carried by the parent, so they can monitor the baby while they are in other parts of the house.[104] The wavebands used vary by region, but analog baby monitors generally transmit with low power in the 16, 9.3–49.9 or 900 MHz wavebands, and digital systems in the 2.4 GHz waveband.[105] Many baby monitors have duplex channels so the parent can talk to the baby, and cameras to show video of the baby.[106]
- Wireless microphone – a battery-powered microphone with a short-range transmitter that is handheld or worn on a person's body which transmits its sound by radio to a nearby receiver unit connected to a sound system. Wireless microphones are used by public speakers, performers, and television personalities so they can move freely without trailing a microphone cord. Traditionally, analog models transmit in FM on unused portions of the television broadcast frequencies in the VHF and UHF bands. Some models transmit on two frequency channels for diversity reception to prevent nulls from interrupting transmission as the performer moves around.[107] Some models use digital modulation to prevent unauthorized reception by scanner radio receivers; these operate in the 900 MHz, 2.4 GHz or 6 GHz ISM bands.[108] European standards also support wireless multichannel audio systems (WMAS) that can better support the use of large numbers of wireless microphones at a single event or venue. As of 2021[update], U.S. regulators were considering adopting rules for WMAS.[109]
Data communication
[edit]- Wireless networking – automated radio links which transmit digital data between computers and other wireless devices using radio waves, linking the devices together transparently in a computer network. Computer networks can transmit any form of data: in addition to email and web pages, they also carry phone calls (VoIP), audio, and video content (called streaming media). Security is more of an issue for wireless networks than for wired networks since anyone nearby with a wireless modem can access the signal and attempt to log in. The radio signals of wireless networks are encrypted using WPA.[110]
- Wireless LAN (wireless local area network or Wi-Fi) – based on the IEEE 802.11 standards, these are the most widely used computer networks, used to implement local area networks without cables, linking computers, laptops, cell phones, video game consoles, smart TVs and printers in a home or office together, and to a wireless router connecting them to the Internet with a wire or cable connection. Wireless routers in public places like libraries, hotels and coffee shops create wireless access points (hotspots) to allow the public to access the Internet with portable devices like smartphones, tablets or laptops. Each device exchanges data using a wireless modem (wireless network interface controller), an automated microwave transmitter and receiver with an omnidirectional antenna that works in the background, exchanging data packets with the router. Wi-Fi uses channels in the 2.4 GHz and 5 GHz ISM bands with OFDM (orthogonal frequency-division multiplexing) modulation to transmit data at high rates. The transmitters in Wi-Fi modems are limited to a radiated power of 200 mW to 1 watt, depending on country. They have a maximum indoor range of about 150 ft (50 m) on 2.4 GHz and 50 ft (20 m) on 5 GHz.[111]
- Wireless WAN (wireless wide area network, WWAN) – a variety of technologies that provide wireless internet access over a wider area than Wi-Fi networks do – from an office building to a campus to a neighborhood, or to an entire city. The most common technologies used are: cellular modems, that exchange computer data by radio with cell towers; satellite internet access; and lower frequencies in the UHF band, which have a longer range than Wi-Fi frequencies. Since WWAN networks are much more expensive and complicated to administer than Wi-Fi networks, their use so far has generally been limited to private networks operated by large corporations.[111]
- Bluetooth – a very short-range wireless interface on a portable wireless device used as a substitute for a wire or cable connection, mainly to exchange files between portable devices and connect cellphones and music players with wireless headphones. In the most widely used mode, transmission power is limited to 1 milliwatt, giving it a very short range of up to 10 m (30 feet). The system uses frequency-hopping spread spectrum transmission, in which successive data packets are transmitted in a pseudorandom order on one of 79 1 MHz Bluetooth channels between 2.4 and 2.83 GHz in the ISM band. This allows Bluetooth networks to operate in the presence of noise, other wireless devices and other Bluetooth networks using the same frequencies, since the chance of another device attempting to transmit on the same frequency at the same time as the Bluetooth modem is low. In the case of such a "collision", the Bluetooth modem just retransmits the data packet on another frequency.[112]
- Packet radio – a long-distance peer-to-peer wireless ad-hoc network in which data packets are exchanged between computer-controlled radio modems (transmitter/receivers) called nodes, which may be separated by miles, and maybe mobile. Each node only communicates with neighboring nodes, so packets of data are passed from node to node until they reach their destination using the X.25 network protocol. Packet radio systems are used to a limited degree by commercial telecommunications companies and by the amateur radio community.[113]
- Text messaging (texting) – this is a service on cell phones, allowing a user to type a short alphanumeric message and send it to another phone number, and the text is displayed on the recipient's phone screen. It is based on the Short Message Service (SMS) which transmits using spare bandwidth on the control radio channel used by cell phones to handle background functions like dialing and cell handoffs. Due to technical limitations of the channel, text messages are limited to 160 alphanumeric characters.[114]
- Microwave relay – a long-distance high bandwidth point-to-point digital data transmission link consisting of a microwave transmitter connected to a dish antenna that transmits a beam of microwaves to another dish antenna and receiver. Since the antennas must be in line-of-sight, distances are limited by the visual horizon to 30–40 miles (48–64 km). Microwave links are used for private business data, wide area computer networks (WANs), and by telephone companies to transmit long-distance phone calls and television signals between cities.[115][116]
- Telemetry – automated one-way (simplex) transmission of measurements and operation data from a remote process or device to a receiver for monitoring. Telemetry is used for in-flight monitoring of missiles, drones, satellites, and weather balloon radiosondes, sending scientific data back to Earth from interplanetary spacecraft, communicating with electronic biomedical sensors implanted in the human body, and well logging. Multiple channels of data are often transmitted using frequency-division multiplexing or time-division multiplexing.[117] Telemetry is starting to be used in consumer applications such as:
- Automated meter reading – electric power meters, water meters, and gas meters that, when triggered by an interrogation signal, transmit their readings by radio to a utility reader vehicle at the curb, to eliminate the need for an employee to go on the customer's property to manually read the meter.[118]
- Electronic toll collection – on toll roads, an alternative to manual collection of tolls at a toll booth, in which a transponder in a vehicle, when triggered by a roadside transmitter, transmits a signal to a roadside receiver to register the vehicle's use of the road, enabling the owner to be billed for the toll.[119]
- Radio Frequency Identification (RFID) – identification tags containing a tiny radio transponder (receiver and transmitter) which are attached to merchandise. When it receives an interrogation pulse of radio waves from a nearby reader unit, the tag transmits back an ID number, which can be used to inventory goods. Passive tags, the most common type, have a chip powered by the radio energy received from the reader, rectified by a diode, and can be as small as a grain of rice. They are incorporated in products, clothes, railroad cars, library books, airline baggage tags and are implanted under the skin in pets and livestock (microchip implant) and even people. Privacy concerns have been addressed with tags that use encrypted signals and authenticate the reader before responding. Passive tags use 125–134 kHz, 13, 900 MHz and 2.4 and 5 GHz ISM bands and have a short range. Active tags, powered by a battery, are larger but can transmit a stronger signal, giving them a range of hundreds of meters.[120]
- Submarine communication – When submerged, submarines are cut off from all ordinary radio communication with their military command authorities by the conductive seawater. However radio waves of low enough frequencies, in the VLF (30 to 3 kHz) and ELF (below 3 kHz) bands are able to penetrate seawater. Navies operate large shore transmitting stations with power output in the megawatt range to transmit encrypted messages to their submarines in the world's oceans. Due to the small bandwidth, these systems cannot transmit voice, only text messages at a slow data rate. The communication channel is one-way, since the long antennas needed to transmit VLF or ELF waves cannot fit on a submarine. VLF transmitters use miles long wire antennas like umbrella antennas. A few nations use ELF transmitters operating around 80 Hz, which can communicate with submarines at lower depths. These use even larger antennas called ground dipoles, consisting of two ground (Earth) connections 23–60 km (14–37 miles) apart, linked by overhead transmission lines to a power plant transmitter.[121][122]
Space communication
[edit]This is radio communication between a spacecraft and an Earth-based ground station, or another spacecraft. Communication with spacecraft involves the longest transmission distances of any radio links, up to billions of kilometers for interplanetary spacecraft. In order to receive the weak signals from distant spacecraft, satellite ground stations use large parabolic "dish" antennas up to 25 metres (82 ft) in diameter and extremely sensitive receivers. High frequencies in the microwave band are used, since microwaves pass through the ionosphere without refraction, and at microwave frequencies the high-gain antennas needed to focus the radio energy into a narrow beam pointed at the receiver are small and take up a minimum of space in a satellite. Portions of the UHF, L, C, S, ku and ka band are allocated for space communication. A radio link that transmits data from the Earth's surface to a spacecraft is called an uplink, while a link that transmits data from the spacecraft to the ground is called a downlink.[124]
- Communication satellite – an artificial satellite used as a telecommunications relay to transmit data between widely separated points on Earth. These are used because the microwaves used for telecommunications travel by line of sight and so cannot propagate around the curve of the Earth. As of 1 January 2021[update], there were 2,224 communications satellites in Earth orbit.[125] Most are in geostationary orbit 22,200 miles (35,700 km) above the equator, so that the satellite appears stationary at the same point in the sky, so the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track it. In a satellite ground station a microwave transmitter and large satellite dish antenna transmit a microwave uplink beam to the satellite. The uplink signal carries many channels of telecommunications traffic, such as long-distance telephone calls, television programs, and internet signals, using a technique called frequency-division multiplexing (FDM). On the satellite, a transponder receives the signal, translates it to a different downlink frequency to avoid interfering with the uplink signal, and retransmits it down to another ground station, which may be widely separated from the first. There the downlink signal is demodulated and the telecommunications traffic it carries is sent to its local destinations through landlines. Communication satellites typically have several dozen transponders on different frequencies, which are leased by different users.[126]
- Direct broadcast satellite – a geostationary communication satellite that transmits retail programming directly to receivers in subscriber's homes and vehicles on Earth, in satellite radio and TV systems. It uses a higher transmitter power than other communication satellites, to allow the signal to be received by consumers with a small unobtrusive antenna. For example, satellite television uses downlink frequencies from 12.2 to 12.7 GHz in the ku band transmitted at 100 to 250 watts, which can be received by relatively small 43–80 cm (17–31 in) satellite dishes mounted on the outside of buildings.[127]
See also
[edit]- Outline of radio
- Electromagnetic radiation and health
- List of radios – List of specific models of radios
- Radio quiet zone
References
[edit]- ^ "Radio". Oxford Living Dictionaries. Oxford University Press. 2019. Archived from the original on 24 March 2019. Retrieved 26 February 2019.
- ^ "Definition of radio". Encyclopedia. PCMagazine website, Ziff-Davis. 2018. Retrieved 26 February 2019.
- ^ a b c d Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 1–4. ISBN 978-1316785164.
- ^ a b c d "125 Years Discovery of Electromagnetic Waves". Karlsruhe Institute of Technology. 16 May 2022. Archived from the original on 14 July 2022. Retrieved 14 July 2022.
- ^ a b Bondyopadhyay, Prebir K. (1995) "Guglielmo Marconi – The father of long distance radio communication – An engineer's tribute", 25th European Microwave Conference: Volume 2, pp. 879–85
- ^ a b "1890s – 1930s: Radio". Elon University. Archived from the original on 8 June 2022. Retrieved 14 July 2022.
- ^ a b Belrose, John S. (5–7 September 1995). "Radio's First Message – Fessenden and Marconi". Institute of Electrical and Electronics Engineers. Retrieved 6 November 2022.
- ^ a b "History of Commercial Radio". Federal Communications Commission. 23 October 2020. Archived from the original on 1 January 2022. Retrieved 14 July 2022.
- ^ "radio (n.)". Online Etymology Dictionary. Retrieved 13 July 2022.
- ^ Bell, Alexander Graham (July 1881). "Production of Sound by Radiant Energy". Popular Science Monthly. pp. 329–330.
[W]e have named the apparatus for the production and reproduction of sound in this way the "photophone", because an ordinary beam of light contains the rays which are operative. To avoid in future any misunderstandings upon this point, we have decided to adopt the term "radiophone", proposed by M. Mercadier, as a general term signifying the production of sound by any form of radiant energy...
- ^ Manning, Trevor (2009). Microwave Radio Transmission Design Guide. Artech House. p. 2.
- ^ Maver, William Jr. (1903). American Telegraphy and Encyclopedia of the Telegraph: Systems, Apparatus, Operation. New York: Maver Publishing Co. p. 333.
wireless telegraphy.
- ^ Steuart, William Mott; et al. (1906). Special Reports: Telephones and Telegraphs 1902. Washington D.C.: U.S. Bureau of the Census. pp. 118–119.
- ^ a b c d https://earlyradiohistory.us/sec022.htm Thomas H. White, United States Early Radio History, Section 22
- ^ Collins, A. Frederick (10 May 1902). "The Genesis of Wireless Telegraphy". Electrical World and Engineer. p. 811.
- ^ "Wireless Telegraphy". The Practical Engineer. 25 February 1898. p. 174.
Dr. O. J. Lodge, who preceded Marconi in making experiments in what may be called "ray" telegraphy or radiotelegraphy by a year or two, has devised a new method of sending and receiving the messages. The reader will understand that in the radiotelegraph electric waves forming the signals of the message starting from the sending instrument and travel in all directions like rays of light from a lamp, only they are invisible.
- ^ "Wireless Telegraphy", The Electrical Review (London), 20 January 1905, page 108, quoting from the British Post Office's 30 December 1904 Post Office Circular.
- ^ "Interference with Wireless Messages", Electrical World, 22 June 1907, page 1270.
- ^ Sungook Hong (2001), Wireless: From Marconi's Black-box to the Audion, MIT Press, pp. 5–10
- ^ "The Nobel Prize in Physics 1909". NobelPrize.org. 2023. Archived from the original on 31 July 2023. Retrieved 31 July 2023.
- ^ Kraus, John D. (1988). Antennas (2nd ed.). Tata-McGraw Hill. p. 50. ISBN 0074632191.
- ^ Serway, Raymond; Faughn, Jerry; Vuille, Chris (2008). College Physics, 8th Ed. Cengage Learning. p. 714. ISBN 978-0495386933.
- ^ Balanis, Constantine A. (2005). Antenna theory: Analysis and Design, 3rd Ed. John Wiley and Sons. p. 10. ISBN 978-1118585733.
- ^ a b c d Ellingson, Steven W. (2016). Radio Systems Engineering. Cambridge University Press. pp. 16–17. ISBN 978-1316785164.
- ^ Visser, Hubregt J. (2012). Antenna Theory and Applications. John Wiley & Sons. ISBN 978-1119990253. Retrieved 29 August 2022.
- ^ Zainah Md Zain; Hamzah Ahmad; Dwi Pebrianti; Mahfuzah Mustafa; Nor Rul Hasma Abdullah; Rosdiyana Samad; Maziyah Mat Noh (2020). Proceedings of the 11th National Technical Seminar on Unmanned System Technology 2019: NUSYS'19. Springer Nature. p. 535. ISBN 978-9811552816. Extract of pp. 535–536
- ^ "Electromagnetic Radiation". NASA. Archived from the original on 23 May 2016. Retrieved 18 August 2022.
- ^ "How far can radio waves travel in vacuum? and light waves?". Physics Stack Exchange. July 2019. Archived from the original on 18 August 2022. Retrieved 18 August 2022.
- ^ a b c Brain, Marshall (7 December 2000). "How Radio Works". HowStuffWorks.com. Retrieved 11 September 2009.
- ^ a b c d e f g h Faruque, Saleh (2016). Radio Frequency Modulation Made Easy. Springer Publishing. ISBN 978-3319412023. Retrieved 29 August 2022.
- ^ Mustafa Ergen (2009). Mobile Broadband: including WiMAX and LTE. Springer Science+Business Media. doi:10.1007/978-0-387-68192-4. ISBN 978-0387681894.
- ^ Tony Dorbuck (ed.), The Radio Amateur's Handbook, Fifty-Fifth Edition, American Radio Relay League, 1977, p. 368
- ^ John Avison, The World of Physics, Nelson · 2014, page 367
- ^ C-W and A-M Radio Transmitters and Receivers, United States. Department of the Army – 1952, pp. 167–168
- ^ a b c d "Spectrum 101" (PDF). US National Aeronautics and Space Administration (NASA). February 2016. Archived (PDF) from the original on 11 February 2017. Retrieved 2 December 2019., p. 6
- ^ a b c Pogorel, Girard; Chaduc, Jean-Marc (2010). The Radio Spectrum: Managing a Strategic Resource. Wiley). ISBN 978-0470393529. Retrieved 29 August 2022.
- ^ "Radio Regulations, 2016 Edition" (PDF). International Telecommunication Union. 3 November 2016. Retrieved 9 November 2019. Article 2, Section 1, p.27
- ^ a b Nomenclature of the frequency and wavelength bands used in telecommunications (PDF) (Report). Geneva: International Telecommunications Union. 2015. ITU-R V.431-8. Retrieved 6 April 2023.
- ^ Communications-electronics Management of the Electromagnetic Spectrum (Report). Headquarters, Department of the Army. United States Department of the Army. 1973. p. 2.
- ^ Duncan, Christopher; Gkountouna, Olga; Mahabir, Ron (2021). "Theoretical Applications of Magnetic Fields at Tremendously Low Frequency in Remote Sensing and Electronic Activity Classification". In Arabnia, Hamid R.; Deligiannidis, Leonidas; Shouno, Hayaru; Tinetti, Fernando G.; Tran, Quoc-Nam (eds.). Advances in Computer Vision and Computational Biology. Transactions on Computational Science and Computational Intelligence. Cham: Springer International Publishing. pp. 235–247. doi:10.1007/978-3-030-71051-4_18. ISBN 978-3030710507. S2CID 238934419.
- ^ Norberg, Bob (27 November 2022). "Digital Radio Is Coming, But Analog Isn't Dead Yet". The Ledger. Archived from the original on 3 September 2022. Retrieved 3 September 2022.
- ^ "Analogue To Digital: Radio Slow To Tune Into Transition". Financial Express. 13 October 2005. Archived from the original on 3 September 2022. Retrieved 3 September 2022.
- ^ "Radio Frequency Interference Best Practices Guidebook - CISA - Feb. 2020" (PDF). Cybersecurity and Infrastructure Security Agency SAFECOM/National Council of Statewide Interoperability Coordinators. USDepartment of Homeland Security. Retrieved 29 August 2022.
- ^ Mazar (Madjar), Haim (2016). Radio Spectrum Management: Policies, Regulations and Techniques. Wiley. ISBN 978-1118511794. Retrieved 29 August 2022.
- ^ "ARTICLE 19 Identification of stations" (PDF). International Telecommunication Union. Retrieved 29 August 2022.
- ^ "Commercial Radio Operator Types of Licenses". Federal Communications Commission. 6 May 2016. Retrieved 29 August 2022.
- ^ Dichoso, Joe (October 9, 2007). "FCC Basics of Unlicensed Transmitters" (PDF). Federal Communications Commission. Retrieved 29 August 2022.
- ^ Pizzi, Skip; Jones, Graham (2014). A Broadcast Engineering Tutorial for Non-Engineers, 4th Ed. National Association of Broadcasters, Taylor and Francis. ISBN 978-0415733397.
- ^ Witten, Alan Joel (2017). Handbook of Geophysics and Archaeology. Routledge. ISBN 978-1351564588. Retrieved 30 August 2022.
- ^ Bonsor, Kevin (26 September 2001). "How Satellite Radio Works". howstuffworks.com. HowStuffWorks. Retrieved 30 August 2022.
- ^ Gosling, William (1998). Radio Antennas and Propagation: Radio Engineering Fundamentals. Newnes. ISBN 978-0750637411. Retrieved 30 August 2022.
- ^ Griffin, B. Whitfield (2000). Radio-electronic Transmission Fundamentals. SciTech Publishing/Noble. ISBN 978-1884932137. Retrieved 30 August 2022.
- ^ Pizzi, Skip; Jones, Graham (2014). A Broadcast Engineering Tutorial for Non-Engineers. CRC Press/Focal Press. ISBN 978-1317906834. Retrieved 30 August 2022.
- ^ Perez, Reinaldo (2013). Handbook of Electromagnetic Compatibility. Academic Press. ISBN 978-1483288970. Retrieved 30 August 2022.
- ^ Green, Clarence R.; Bourque, Robert M. (1980). The Theory and Servicing of AM, FM, and FM Stereo Receivers. Prentice-Hall. p. 6.
- ^ "Appendix C: Glossary" (PDF). Radio – Preparing for the Future (Report). London: Ofcom. October 2005. p. 2.
- ^ a b Gupta, Rakesh (2021). Education Technology in Physical Education and Sports. Audio Visual Media in Physical Education. India: Friends Publications. ISBN 978-9390649808. Retrieved 30 August 2022.
- ^ a b c Berg, Jerome S. (2008). Broadcasting on the Short Waves: 1945 to today. McFarland. ISBN 978-0786451982. Retrieved 30 August 2022.
- ^ Sterling, Christopher H.; Kieth, Michael C. (2009). Sounds of Change: A history of FM broadcasting in America. University of North Carolina Press. ISBN 978-0807877555. Retrieved 30 August 2022.
- ^ Digital Radio Guide (PDF) (Report). Switzerland: World Broadcasting Unions. 2017.
- ^ Baker, William (2020). "DAB vs. FM: The differences between analog and digital radio". Radio Fidelity online magazine. Retrieved 14 September 2020.
- ^ a b Hoeg, Wolfgang; Lauterbach, Thomas (2004). Digital Audio Broadcasting: Principles and applications of digital radio. John Wiley & Sons. ISBN 978-0470871423. Retrieved 30 August 2022.
- ^ Revel, Timothy (10 January 2017). "Norway is first country to turn off FM radio and go digital-only". New Scientist. Retrieved 4 September 2022.
- ^ McLane, Paul (30 August 2021). "Swiss FM shutdown reverts to original 2024 date". Radio World. Retrieved 4 September 2022.
- ^ Trends in Radio Research: Diversity, innovation, and policies. Cambridge Scholars Publishing. 2018. p. 263.
- ^ Bortzfield, Bill (27 November 2017). The state of HD Radio in Jacksonville and nationwide. WJCT Public Media (Report). Retrieved 4 September 2022.
- ^ Hadfield, Marty (15 August 2016). Transmitter & programming considerations for HD Radio. RBR + TVBR (rbr.com) (Report). Retrieved 4 September 2022.
- ^ "Receiving NRSC‑5". theori.io. 9 June 2017. Archived from the original on 20 August 2017. Retrieved 14 April 2018.
- ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2013). NAB Engineering Handbook. National Association of Broadcasters / Taylor & Francis. pp. 558–559. ISBN 978-1136034107.
- ^ a b DRM System Specification (PDF) (vers. 4.2.1). Geneva, CH: European Broadcasting Union. January 2021. p. 178. ETSI ES 201 980. Retrieved 19 April 2018 – via ETSI.org.
- ^ Satellite S‑band radio frequency table (Report). 15 August 2011. Retrieved 23 April 2013 – via CSG Network.
- ^ Bonsor, Kevin (26 September 2001). "How satellite radio works". HowStuffWorks. Retrieved 1 May 2013.
- ^ Enticknap, Leo Douglas Graham (2005). Moving Image Technology: From Zoetrope to Digital. Wallflower Press (Columbia University Press). ISBN 978-1904764069. Retrieved 31 August 2022.
- ^ Starks, M. (2013). The Digital Television Revolution: Origins to Outcomes. Springer. ISBN 978-1137273345. Retrieved 31 August 2022.
- ^ Brice, Richard (2002). Newnes Guide to Digital TV. Newnes. ISBN 978-0750657211. Retrieved 31 August 2022.
- ^ Bartlet, George W., Ed. (1975). NAB Engineering Handbook, 6th Ed. Washington, D.C.: National Association of Broadcasters. p. 21.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Lundstrom, Lars-Ingemar (2012). Understanding Digital Television: An Introduction to DVB Systems with Satellite, Cable, Broadband and Terrestrial TV Distribution. CRC Press. ISBN 978-1136032820.
- ^ a b Ingram, Dave (1983). Video Electronics Technology. TAB Books. ISBN 978-0830614745. Retrieved 1 September 2022.
- ^ Federal Communications Commission (Parts 20 – 39). ProStar Publications. ISBN 9781577858461.
- ^ Benoit, Herve (1999). Satellite Television: Analogue and Digital Reception Techniques. Butterworth-Heinemann/Arnold. ISBN 978-0340741085. Retrieved 1 September 2022.
- ^ Long, Mark (1999). The Digital Satellite TV Handbook. Newnes. ISBN 978-0750671712. Retrieved 1 September 2022.
- ^ Weik, Martin H. (2000). "standard frequency and time signal". Computer Science and Communications Dictionary. Computer Science and Communications Dictionary. Springer. p. 1649. doi:10.1007/1-4020-0613-6_18062. ISBN 978-0792384250. Retrieved 1 September 2022.
- ^ "What Closing A Government Radio Station Would Mean For Your Clocks". National Public Radio, Weekend Edition. Retrieved 1 September 2022.
- ^ Frenzel, Louis (2017). Electronics Explained: Fundamentals for Engineers, Technicians, and Makers. Newnes. ISBN 978-0128118795. Retrieved 2 September 2022.
- ^ a b Brain, Marshall; Tyson, Jeff; Layton, Julia (2018). "How Cell Phones Work". How Stuff Works. InfoSpace Holdings LLC. Retrieved 31 December 2018.
- ^ Lawson, Stephen. "Ten Ways Your Smartphone Knows Where You Are". PCWorld. Retrieved 2 September 2022.
- ^ Guowang Miao; Jens Zander; Ki Won Sung; Ben Slimane (2016). Fundamentals of Mobile Data Networks. Cambridge University Press. ISBN 978-1107143210.
- ^ "Cellular Telephone Basics". Privateline.com. 1 January 2006. p. 2. Archived from the original on 17 April 2012. Retrieved 2 September 2022.
- ^ Brown, Sara. "5G, explained". mitsloan.mit.edu. MIT Sloan School of Management. Retrieved 2 September 2022.
- ^ Osseiran, Afif; Monserrat, Jose F.; Marsch, Patrick (2016). 5G Mobile and Wireless Communications Technology. Cambridge University Press. ISBN 978-1107130098. Retrieved 2 September 2022.
- ^ Chandler, Nathan (13 February 2013). "How Satellite Phones Work". howstuffworks.com. HowStuffWorks. Retrieved 2 September 2022.
- ^ "Satellite Phone : Functioning/Working Of Satellite Phone". tutorialsweb.com. Tutorials Web. Retrieved 2 September 2022.
- ^ McComb, Gordon (October 1982). "Never Miss a Call: PS Buyer's Guide to Cordless Phones". Popular Science. pp. 84–85 – via Google Books.
- ^ Guy, Nick (13 July 2022). "Wirecutter: The Best Cordless Phone". The New York Times. ISSN 0362-4331. Retrieved 7 September 2022.
- ^ U.S. Fire Administration (June 2016). Voice Radio Communications Guide for the Fire Service (PDF) (Report). Washington, D.C.: Federal Emergency Management Agency. pp. 33–34. Retrieved 7 September 2022.
- ^ Sterling, Christopher H. (2008). Military Communications: From Ancient Times to the 21st Century. ABC-CLIO. pp. 503–504. ISBN 978-1851097326.
- ^ Aeronautical Frequency Committee Manual (PDF) (Report). Aviation Spectrum Resources Inc. 2012.
- ^ "Aviation Radio Bands and Frequencies". Smeter network 2011. Archived from the original on 12 February 2004. Retrieved 16 February 2011.
- ^ North Atlantic Operations and Airspace Manual (PDF) (Report). ICAO European and North Atlantic Office. 28 March 2019.
- ^ Van Horn, Larry. "The Military VHF/UHF Spectrum". Monitoring Times.
- ^ Fletcher, Sue (2002). A Boater's Guide to VHF and GMDSS. Camden, Maine: International Marine/McGraw-Hill. ISBN 0071388028. OCLC 48674566.
- ^ The ARRL Handbook for Radio Communications 2017 (94th ed.). Newington, Connecticut: American Radio Relay League. 2016. ISBN 978-1625950628. OCLC 961215964.
- ^ Brain, Marshall (11 February 2021). "Radio basics: Real life examples". How radio works. How Stuff Works website. Retrieved 27 August 2022.
- ^ Radiofrequency Toolkit for Environmental Health Practitioners (PDF) (Report). Vancouver, British Columbia, Canada: British Columbia Centre for Disease Control/National Collaborating Centre for Environmental Health. p. 26. ISBN 978-1926933481.
- ^ "Best Baby Monitor Buying Guide". Consumer Reports. 24 April 2016. Retrieved 9 September 2022.
- ^ Eargle, John (2005). "Overview of Wireless Microphone Technology". The Microphone Book (2nd ed.). Oxford: Focal Press. pp. 142–151. ISBN 978-1136118067 – via Google Books.
- ^ Bell, Dee Ana (1 November 2012). "Avoiding Audio Problems with Wireless Microphone Systems". TV Technology. Retrieved 10 September 2022.
- ^ Vernon, Tom (28 August 2021). "Wireless Mic Industry Debates WMAS Technology". Radio World. Retrieved 10 September 2022.
- ^ Lewis, Barry D.; Davis, Peter T. (2004). Wireless Networks For Dummies. John Wiley & Sons. ISBN 978-0764579776. Retrieved 12 September 2022.
- ^ a b Lowe, Doug (2020). Networking For Dummies. John Wiley & Sons. ISBN 978-1119748670. Retrieved 12 September 2022.
- ^ Muller, Nathan J. (2002). Networking A to Z. McGraw-Hill Professional. pp. 45–47. ISBN 978-0071429139. Archived from the original on 24 June 2021. Retrieved 12 September 2022.
- ^ Silver, H. Ward (2008). The ARRL Extra Class License Manual for Ham Radio. American Radio Relay League. ISBN 978-0872591356. Retrieved 12 September 2022.
- ^ Hillebrand, Friedhelm (2010). Short Message Service (SMS): The Creation of Personal Global Text Messaging. John Wiley & Sons. ISBN 978-0470689936. Retrieved 12 September 2022.
- ^ McGregor, Michael A.; Driscoll, Paul D.; Mcdowell, Walter (2016). Head's Broadcasting in America: A Survey of Electronic Media. Routledge. ISBN 978-1317347927. Retrieved 12 September 2022.
- ^ Radio-Electronics-Television Manufacturers Association. Engineering Department (1955). "Microwave Relay Systems for Communications". Electronic Industries Association. Retrieved 12 September 2022.
- ^ Bailey, David (2003). Practical Radio Engineering and Telemetry for Industry. Elsevier. ISBN 978-0080473895. Retrieved 12 September 2022.
- ^ Arafath, Yeasin; Mazumder, Debabrata; Hassan, Rakib (2012). Automatic Meter Reading by Radio Frequency Technology. Lap Lambert Academic Publishing GmbH KG. ISBN 978-3847372219. Retrieved 12 September 2022.
- ^ Bonsor, Kevin (28 August 2001). "How E-ZPass Works". howstuffworks.com. HowStuff Works. Retrieved 12 September 2022.
- ^ Hunt, V. Daniel; Puglia, Albert; Puglia, Mike (2007). RFID: A Guide to Radio Frequency Identification. John Wiley & Sons. ISBN 978-0470112243. Retrieved 12 September 2022.
- ^ White, Ryan (17 December 2021). "How do submarines communicate with the outside world?". navalpost.com. Naval Post. Retrieved 12 September 2022.
- ^ "Naval Research Reviews, Vol. 27". Superintendent of Government Documents. 1974. Retrieved 12 September 2022.
- ^ "Ground infrastructure". Russian Satellite Communications Company.
- ^ "State-of-the-Art of Small Spacecraft Technology, 9.0 – Communications". nasa.gov. National Aeronautics and Space Administration. 16 October 2021. Retrieved 11 September 2022.
- ^ "UCS Satellite Database". Union of Concerned Scientists. 1 January 2021. Retrieved 21 May 2021.
- ^ Marsten, Richard B. (2014). Communication Satellite Systems Technology. Academic Press. ISBN 978-1483276816. Retrieved 11 September 2022.
- ^ "Satellite TV-Direct Broadcast Satellite System, DBS TV". rfwireless-world.com. RF Wireless World. Retrieved 11 September 2022.
General references
[edit]- Basic Radio Principles and Technology – Elsevier Science
- The Electronics of Radio – Cambridge University Press
- Radio Systems Engineering – Cambridge University Press
- Radio-Electronic Transmission Fundamentals – SciTech Publishing
- Analog Electronics, Analog Circuitry Explained – Elsevier Science
External links
[edit]- "Radio". Merriam-Webster.com Dictionary. Merriam-Webster.