Jump to content

Continuum structure function

From Wikipedia, the free encyclopedia

In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]

References

[edit]
  1. ^ Baxter, Laurence A. (1984). "Continuum structures I". Journal of Applied Probability. 21 (4): 802–815. doi:10.2307/3213697. JSTOR 3213697.
  2. ^ Baxter, Laurence A. (1986). "Continuum structures. II". Mathematical Proceedings of the Cambridge Philosophical Society. 99 (2): 331–338. Bibcode:1986MPCPS..99..331B. doi:10.1017/S0305004100064240.
  3. ^ Kim, Chul; Baxter, Laurence A. (1987). "Reliability importance for continuum structure functions". Journal of Applied Probability. 24 (3): 779–785. doi:10.2307/3214108. JSTOR 3214108.

Further reading

[edit]