Continuum structure function
Appearance
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In mathematics, a continuum structure function (CSF) is defined by Laurence Baxter as a nondecreasing mapping from the unit hypercube to the unit interval. It is used by Baxter to help in the Mathematical modelling of the level of performance of a system in terms of the performance levels of its components.[1][2][3]
References
[edit]- ^ Baxter, Laurence A. (1984). "Continuum structures I". Journal of Applied Probability. 21 (4): 802–815. doi:10.2307/3213697. JSTOR 3213697.
- ^ Baxter, Laurence A. (1986). "Continuum structures. II". Mathematical Proceedings of the Cambridge Philosophical Society. 99 (2): 331–338. Bibcode:1986MPCPS..99..331B. doi:10.1017/S0305004100064240.
- ^ Kim, Chul; Baxter, Laurence A. (1987). "Reliability importance for continuum structure functions". Journal of Applied Probability. 24 (3): 779–785. doi:10.2307/3214108. JSTOR 3214108.
Further reading
[edit]- Kim, Chul; Baxter, Laurence A. (1987). "Axiomatic characterizations of continuum structure functions". Operations Research Letters. 6 (6): 297–300. doi:10.1016/0167-6377(87)90047-2.
- Baxter, Laurence A.; Lee, Seung Min (2009). "Further Properties of Reliability Importance for Continuum Structure Functions". Probability in the Engineering and Informational Sciences. 3 (2): 237. doi:10.1017/S026996480000111X. S2CID 122033755.