Jump to content

Bradycardia: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
Line 27: Line 27:
===Atrial===
===Atrial===
{{see also|Sinus bradycardia|Sick sinus syndrome}}
{{see also|Sinus bradycardia|Sick sinus syndrome}}
Atrial bradycardias are divided into';';.'
Atrial bradycardias are divided into three different types. The first, [[respiratory sinus arrhythmia]], is usually found in young and healthy adults. Heart rate increases during inhalation and decreases during exhalation. This is thought to be caused by changes in the vagal tone during respiration.<ref name=HN>{{cite book|title=Harwood-Nuss' Clinical Practice of Emergency Medicine|editor=Allan B. Wolfson|year=2005|edition=4th|page=260|isbn=0-7817-5125-X}}</ref> If the decrease during exhalation drops the heart rate below 60 bpm on each breath, this type of bradycardia is usually deemed benign and a sign of good autonomic tone.
;,
'L,;'L,'
,'
;L three different types. The first, [[respiratory sinus arrhythmia]], is usually found in young and healthy adults. Heart rate increases during inhalation and decreases during exhalation. This is thought to be caused by changes in the vagal tone during respiration.<ref name=HN>{{cite book|title=Harwood-Nuss' Clinical Practice of Emergency Medicine|editor=Allan B. Wolfson|year=2005|edition=4th|page=260|isbn=0-7817-5125-X}}</ref> If the decrease during exhalation drops the heart rate below 60 bpm on each breath, this type of bradycardia is usually deemed benign and a sign of good autonomic tone.


The second, sinus bradycardia, is a sinus rhythm of less than 60 bpm. It is a common condition found in both healthy individuals and those who are considered well-[[Athletic heart syndrome|conditioned athletes]]. Studies have found 50–85% of conditioned athletes have [[benign]] sinus bradycardia, as compared to 23% of the general population studied.<ref>{{cite book|last=Ward|first=Bryan G.|coauthors=Rippe, JM|title=Athletic Heart Syndrome|publisher=Clinical Sports Medicine|year=1992|page=259|chapter=11}}</ref> The heart muscle of athletes has become conditioned to have a higher stroke volume, so requires fewer contractions to circulate the same volume of blood.<ref name=HN/>
The second, sinus bradycardia, is a sinus rhythm of less than 60 bpm. It is a common condition found in both healthy individuals and those who are considered well-[[Athletic heart syndrome|conditioned athletes]]. Studies have found 50–85% of conditioned athletes have [[benign]] sinus bradycardia, as compared to 23% of the general population studied.<ref>{{cite book|last=Ward|first=Bryan G.|coauthors=Rippe, JM|title=Athletic Heart Syndrome|publisher=Clinical Sports Medicine|year=1992|page=259|chapter=11}}</ref> The heart muscle of athletes has become conditioned to have a higher stroke volume, so requires fewer contractions to circulate the same volume of blood.<ref name=HN/>

Revision as of 14:11, 18 November 2013

Bradycardia
SpecialtyCardiology Edit this on Wikidata

Bradycardia (/ˌbrædɪˈkɑːrdiə/; from the Greek βραδύς, bradys "slow", and καρδία, kardia, "heart"), in the context of adult medicine, is the resting heart rate of under 60 beats per minute (BPM), although it is seldom symptomatic until the rate drops below 50 BPM. It sometimes results in fatigue, weakness, dizziness and at very low rates fainting.[1] A waking heart rate below 40 BPM is considered absolute bradycardia.

During sleep, a slow heartbeat with rates around 40–50 BPM is usual, and is considered normal. Trained athletes may also have a very slow resting heart rate as sport adaptation, which prevents tachycardia during training. (e.g. professional cyclist Miguel Indurain had a resting heart rate of 28 BPM).[2] Martin Brady holds the world record for the slowest heartbeat in a healthy human, with a heart rate measured in 2005 of just 27 bpm.[3]

The term relative bradycardia is used in explaining a heart rate which, although not actually below 60 BPM, is still considered too slow for the individual's current medical condition.

Definition

Bradycardia in an adult is any heart rate less than 60 beats per minute (BPM), although symptoms usually manifest only for heart rates less than 50.[4]

Classification

Illustration comparing the EKGs of a healthy person (top) and a person with bradycardia (bottom). The points on the heart where the EKG signals are measured are also shown.

Atrial

Atrial bradycardias are divided into';';.'

,

'L,;'L,' ,'

L three different types. The first, respiratory sinus arrhythmia, is usually found in young and healthy adults. Heart rate increases during inhalation and decreases during exhalation. This is thought to be caused by changes in the vagal tone during respiration.[5] If the decrease during exhalation drops the heart rate below 60 bpm on each breath, this type of bradycardia is usually deemed benign and a sign of good autonomic tone.

The second, sinus bradycardia, is a sinus rhythm of less than 60 bpm. It is a common condition found in both healthy individuals and those who are considered well-conditioned athletes. Studies have found 50–85% of conditioned athletes have benign sinus bradycardia, as compared to 23% of the general population studied.[6] The heart muscle of athletes has become conditioned to have a higher stroke volume, so requires fewer contractions to circulate the same volume of blood.[5]

The third, Sick sinus syndrome, covers conditions that include severe sinus bradycardia, sinoatrial block, sinus arrest, and bradycardia-tachycardia syndrome (atrial fibillation, flutter, and paroxysmal supraventricular tachycardia).[5]

Atrioventricular nodal

An atrioventricular nodal bradycardia or AV junction rhythm is usually caused by the absence of the electrical impulse from the sinus node. This usually appears on an EKG with a normal QRS complex accompanied with an inverted P wave either before, during, or after the QRS complex.[5]

An AV junctional escape is a delayed heartbeat originating from an ectopic focus somewhere in the AV junction. It occurs when the rate of depolarization of the SA node falls below the rate of the AV node.[5] This dysrhythmia also may occur when the electrical impulses from the SA node fail to reach the AV node because of SA or AV block.[7] This is a protective mechanism for the heart, to compensate for an SA node that is no longer handling the pacemaking activity, and is one of a series of backup sites that can take over pacemaker function when the SA node fails to do so. This would present with a longer PR interval. A junctional escape complex is a normal response that may result from excessive vagal tone on the SA node. Pathological causes include sinus bradycardia, sinus arrest, sinus exit block, or AV block.[5]

Ventricular

A ventricular bradycardia, also known as ventricular escape rhythm or idioventricular rhythm, is a heart rate of less than 50 bpm. This is a safety mechanism when there is lack of electrical impulse or stimuli from the atrium.[5] Impulses originating from or below the His bundle, also known as ventricular, will produce a wide QRS complex with heart rates between 20 and 40 bpm. Those above the His bundle, also known as junctional, will typically range between 40 and 60 bpm with a narrow QRS complex.[8][9] In a third degree heart block, approximately 61% take place at the bundle branch-Purkinje system, 21% at the AV node, and 15% at the His bundle.[9] AV block may be ruled out with an EKG indicating "a 1:1 relationship between P waves and QRS complexes."[8] Ventricular bradycardias occurs with sinus bradycardia, sinus arrest, and AV block. Treatment often consists of the administration of atropine and cardiac pacing.[5]

Infantile

For infants, bradycardia is defined as a heart rate of less than 100 bpm (normal is around 120–160). Premature babies are more likely than full-term babies to have apnea and bradycardia spells; their cause is not clearly understood. Some researchers[who?] think the spells are related to centers inside the brain, that regulate breathing, which may not be fully developed. Touching the baby gently or rocking the incubator slightly will almost always get the baby to start breathing again, which increases the heart rate. Medications (theophylline or caffeine) can be used to treat these spells in babies if necessary. Neonatal intensive care unit (NICU) standard practice is to electronically monitor the heart and lungs for this reason.

Causes

This cardiac arrhythmia can be underlain by several causes, which are best divided into cardiac and noncardiac causes. Noncardiac causes are usually secondary, and can involve recreational drug use or abuse; metabolic or endocrine issues, especially in the thyroid; an electrolyte imbalance; neurologic factors; autonomic reflexes; situational factors such as prolonged bed rest; and autoimmunity. Cardiac causes include acute or chronic ischemic heart disease, vascular heart disease, valvular heart disease, or degenerative primary electrical disease. Ultimately, the causes act by three mechanisms: depressed automaticity of the heart, conduction block, or escape pacemakers and rhythms.

Generally, two types of problems result in bradycardias: disorders of the sinoatrial node (SA node), and disorders of the atrioventricular node (AV node).

With sinus node dysfunction (sometimes called sick sinus syndrome), there may be disordered automaticity or impaired conduction of the impulse from the sinus node into the surrounding atrial tissue (an "exit block"). Second degree sinoatrial blocks can only be detected by use of a 12-lead EKG.[10] It is difficult and sometimes impossible to assign a mechanism to any particular bradycardia, but the underlying mechanism is not clinically relevant to treatment, which is the same in both cases of sick sinus syndrome: a permanent pacemaker.

Atrioventricular conduction disturbances (aka: AV block; 1o AV block, 2o type I AV block, 2o type II AV block, 3o AV block) may result from impaired conduction in the AV node, or anywhere below it, such as in the Bundle of His. The clinical relevance pertaining to AV blocks is greater than that of sinoatrial blocks.[10]

Patients with bradycardia have likely acquired it, as opposed to having it congenitally. Bradycardia is more common in older patients.

Beta-blocker medicines also can slow the heart rate and decrease how forcefully the heart contracts. Beta blockers may slow the heart rate to a dangerous level if prescribed together with calcium channel blocker type medications.

Bradycardia is also part of the mammalian diving reflex.

Diagnosis

A diagnosis of bradycardia in adults is based on a heart rate less than 60 bpm. This is determined usually either via palpation or an EKG.

If symptoms occur, a determination of electrolytes may be helpful in determining the underlying cause.

Management

The treatment of bradycardia is dependent on whether or not the person is stable or unstable.[4] If oxygen saturations are low, supplemental oxygen should be provided.[4]

Stable

Emergent treatment is not needed if the person is asymptomatic or minimally symptomatic.[4]

Unstable

If a person is unstable the initial recommended treatment is intravenous atropine.[4] Doses less than 0.5 mg should not be used as this may further decrease the rate.[4] If this is not effective intravenous inotrope infusion (dopamine, epinephrine) or transcutaneous pacing should be used.[4] Transvenous pacing may be required if the cause of the bradycardia is not rapidly reversible.[4]

References

  1. ^ Sinus Bradycardia – eMedicine
  2. ^ L'Équipe, France, 2 July 2004
  3. ^ http://www.guinnessworldrecords.com/records-2000/lowest-heart-rate/
  4. ^ a b c d e f g h Neumar RW, Otto CW, Link MS; et al. (2010). "Part 8: adult advanced cardiovascular life support: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care". Circulation. 122 (18 Suppl 3): S729–67. doi:10.1161/CIRCULATIONAHA.110.970988. PMID 20956224. {{cite journal}}: Explicit use of et al. in: |author= (help); Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ a b c d e f g h Allan B. Wolfson, ed. (2005). Harwood-Nuss' Clinical Practice of Emergency Medicine (4th ed.). p. 260. ISBN 0-7817-5125-X.
  6. ^ Ward, Bryan G. (1992). "11". Athletic Heart Syndrome. Clinical Sports Medicine. p. 259. {{cite book}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  7. ^ "AV Junctional Rhythm Disturbances (for Professionals)". American Heart Association. 4 December 2008. Retrieved 15 December 2009.
  8. ^ a b "Arrhythmias and Conduction Disorders". The merck Manuals: Online Medical Library. Merck Sharp and Dohme Corp. 2008-01. Retrieved 16 December 2009. {{cite web}}: Check date values in: |date= (help)
  9. ^ a b Adams, Mary (2003). "Ventricular Escape Rhythms". American Journal of Critical Care. pp. 12: 477–478. Retrieved 15 December 2009. {{cite web}}: Unknown parameter |coauthors= ignored (|author= suggested) (help)
  10. ^ a b Ufberg, JW (2006-02). "Bradydysrhythmias and atrioventricular conduction blocks". Emerg. Med. Clin. North Am. 24 (1). doi:10.1016/j.emc.2005.08.006. PMID 16308110. {{cite journal}}: Check date values in: |date= (help); Unknown parameter |coauthors= ignored (|author= suggested) (help)