Concept in Hopf algebra
In quantum group and Hopf algebra , the bicrossed product is a process to create new Hopf algebras from the given ones. It's motivated by the Zappa–Szép product of groups. It was first discussed by M. Takeuchi in 1981,[ 1] and now a general tool for construction of Drinfeld quantum double.[ 2] [ 3]
Consider two bialgebras
A
{\displaystyle A}
and
X
{\displaystyle X}
, if there exist linear maps
α
:
A
⊗
X
→
X
{\displaystyle \alpha :A\otimes X\to X}
turning
X
{\displaystyle X}
a module coalgebra over
A
{\displaystyle A}
, and
β
:
A
⊗
X
→
A
{\displaystyle \beta :A\otimes X\to A}
turning
A
{\displaystyle A}
into a right module coalgebra over
X
{\displaystyle X}
. We call them a pair of matched bialgebras, if we set
α
(
a
⊗
x
)
=
a
⋅
x
{\displaystyle \alpha (a\otimes x)=a\cdot x}
and
β
(
a
⊗
x
)
=
a
x
{\displaystyle \beta (a\otimes x)=a^{x}}
, the following conditions are satisfied
a
⋅
(
x
y
)
=
∑
(
a
)
,
(
x
)
(
a
(
1
)
⋅
x
(
1
)
)
(
a
(
2
)
x
(
2
)
⋅
y
)
{\displaystyle a\cdot (xy)=\sum _{(a),(x)}(a_{(1)}\cdot x_{(1)})(a_{(2)}^{x_{(2)}}\cdot y)}
a
⋅
1
X
=
ε
A
(
a
)
1
X
{\displaystyle a\cdot 1_{X}=\varepsilon _{A}(a)1_{X}}
(
a
b
)
x
=
∑
(
b
)
,
(
x
)
a
b
(
1
)
⋅
x
(
1
)
b
(
2
)
x
(
2
)
{\displaystyle (ab)^{x}=\sum _{(b),(x)}a^{b_{(1)}\cdot x_{(1)}}b_{(2)}^{x_{(2)}}}
1
A
x
=
ε
X
(
x
)
1
A
{\displaystyle 1_{A}^{x}=\varepsilon _{X}(x)1_{A}}
∑
(
a
)
,
(
x
)
a
(
1
)
x
(
1
)
⊗
a
(
2
)
⋅
x
(
2
)
=
∑
(
a
)
,
(
x
)
a
(
2
)
x
(
2
)
⊗
a
(
1
)
⋅
x
(
1
)
{\displaystyle \sum _{(a),(x)}a_{(1)}^{x_{(1)}}\otimes a_{(2)}\cdot x_{(2)}=\sum _{(a),(x)}a_{(2)}^{x_{(2)}}\otimes a_{(1)}\cdot x_{(1)}}
for all
a
,
b
∈
A
{\displaystyle a,b\in A}
and
x
,
y
∈
X
{\displaystyle x,y\in X}
. Here the Sweedler's notation of coproduct of Hopf algebra is used.
For matched pair of Hopf algebras
A
{\displaystyle A}
and
X
{\displaystyle X}
, there exists a unique Hopf algebra over
X
⊗
A
{\displaystyle X\otimes A}
, the resulting Hopf algebra is called bicrossed product of
A
{\displaystyle A}
and
X
{\displaystyle X}
and denoted by
X
⋈
A
{\displaystyle X\bowtie A}
,
The unit is given by
(
1
X
⊗
1
A
)
{\displaystyle (1_{X}\otimes 1_{A})}
;
The multiplication is given by
(
x
⊗
a
)
(
y
⊗
b
)
=
∑
(
a
)
,
(
y
)
x
(
a
(
1
)
⋅
y
(
1
)
)
⊗
a
(
2
)
y
(
2
)
b
{\displaystyle (x\otimes a)(y\otimes b)=\sum _{(a),(y)}x(a_{(1)}\cdot y_{(1)})\otimes a_{(2)}^{y_{(2)}}b}
;
The counit is
ε
(
x
⊗
a
)
=
ε
X
(
x
)
ε
A
(
a
)
{\displaystyle \varepsilon (x\otimes a)=\varepsilon _{X}(x)\varepsilon _{A}(a)}
;
The coproduct is
Δ
(
x
⊗
a
)
=
∑
(
x
)
,
(
a
)
(
x
(
1
)
⊗
a
(
1
)
)
⊗
(
x
(
2
)
⊗
a
(
2
)
)
{\displaystyle \Delta (x\otimes a)=\sum _{(x),(a)}(x_{(1)}\otimes a_{(1)})\otimes (x_{(2)}\otimes a_{(2)})}
;
The antipode is
S
(
x
⊗
a
)
=
∑
(
x
)
,
(
a
)
S
(
a
(
2
)
)
⋅
S
(
x
(
2
)
)
⊗
S
(
a
(
1
)
)
S
(
x
(
1
)
)
{\displaystyle S(x\otimes a)=\sum _{(x),(a)}S(a_{(2)})\cdot S(x_{(2)})\otimes S(a_{(1)})^{S(x_{(1)})}}
.
Drinfeld quantum double [ edit ]
For a given Hopf algebra
H
{\displaystyle H}
, its dual space
H
∗
{\displaystyle H^{*}}
has a canonical Hopf algebra structure and
H
{\displaystyle H}
and
H
∗
c
o
p
{\displaystyle H^{*cop}}
are matched pairs. In this case, the bicrossed product of them is called Drinfeld quantum double
D
(
H
)
=
H
∗
c
o
p
⋈
H
{\displaystyle D(H)=H^{*cop}\bowtie H}
.
^ Takeuchi, M. (1981), "Matched pairs of groups and bismash products of Hopf algebras", Comm. Algebra , 9 (8): 841– 882, doi :10.1080/00927878108822621
^ Kassel, Christian (1995), Quantum groups , Graduate Texts in Mathematics, vol. 155, Berlin, New York: Springer-Verlag, doi :10.1007/978-1-4612-0783-2 , ISBN 9780387943701
^ Majid, Shahn (1995), Foundations of quantum group theory , Cambridge University Press, doi :10.1017/CBO9780511613104 , ISBN 9780511613104