Atlas of Lie groups and representations
Appearance
![]() | The topic of this article may not meet Wikipedia's notability guidelines for companies and organizations. (February 2025) |
The Atlas of Lie Groups and Representations is a mathematical project to solve the problem of the unitary dual for real reductive Lie groups.[1][2]
As of March 2008[update], the following mathematicians are listed as members:
- Jeffrey Adams
- Dan Barbasch
- Birne Binegar
- Bill Casselman
- Dan Ciubotaru
- Fokko du Cloux
- Scott Crofts
- Steve Jackson
- Alfred Noël
- Tatiana Howard
- Alessandra Pantano
- Annegret Paul
- Patrick Polo
- Siddhartha Sahi
- Susana Salamanca
- John Stembridge
- Peter Trapa
- Marc van Leeuwen
- David Vogan
- Wai-Ling Yee
- Jiu-Kang Yu
- Gregg Zuckerman
References
[edit]- ^ Noël, Alfred G. (2006). A General Computational Scheme for Testing Admissibility of Nilpotent Orbits of Real Lie Groups of Inner Type. Mathematical Software - ICMS 2006. Springer. p. 10. doi:10.1007/11832225_1.
- ^ Adams, Jeffrey; Saunders, B. David; Wan, Zhendong (24 July 2005). Signature of symmetric rational matrices and the unitary dual of lie groups. ISSAC '05: Proceedings of the 2005 international symposium on Symbolic and algebraic computation. p. 14. doi:10.1145/1073884.1073889.
External links
[edit]