Jump to content

An Introduction to the Theory of Numbers

From Wikipedia, the free encyclopedia
An Introduction to the Theory of Numbers
AuthorG. H. Hardy
E. M. Wright
LanguageEnglish
SubjectNumber theory
GenreTextbook
Published1938
PublisherClarendon Press
OCLC879664

An Introduction to the Theory of Numbers is a classic textbook in the field of number theory, by G. H. Hardy and E. M. Wright.

The book grew out of a series of lectures by Hardy and Wright and was first published in 1938.

The third edition added an elementary proof of the prime number theorem, and the sixth edition added a chapter on elliptic curves.

See also

[edit]

References

[edit]
  • Bell, E. T. (1939), "Book Review: An Introduction to the Theory of Numbers", Bulletin of the American Mathematical Society, 45 (7): 507–509, doi:10.1090/S0002-9904-1939-07025-0, ISSN 0002-9904
  • Hardy, Godfrey Harold; Wright, E. M. (1938), An introduction to the theory of numbers. (First ed.), Oxford: Clarendon Press, JFM 64.0093.03, Zbl 0020.29201
  • Hardy, Godfrey Harold; Wright, E. M. (1954) [1938], An introduction to the theory of numbers (Third ed.), Oxford, at the Clarendon Press, MR 0067125
  • Hardy, Godfrey Harold; Wright, E. M. (1971) [1938], An introduction to the theory of numbers (Fourth ed.), The Clarendon Press Oxford University Press
  • Hardy, Godfrey Harold; Wright, E. M. (1979) [1938], An introduction to the theory of numbers (Fifth ed.), The Clarendon Press Oxford University Press, ISBN 978-0-19-853171-5, MR 0568909
  • Hardy, Godfrey Harold; Wright, E. M. (2008) [1938], Heath-Brown, D. R.; Silverman, J. H. (eds.), An introduction to the theory of numbers (Sixth ed.), Oxford University Press, ISBN 978-0-19-921986-5, MR 2445243

Reviews

[edit]
  • E. T. Bell (July 1939). "Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers", Bull. Amer. Math. Soc. 45(7): pp. 507–509
  • Anderson, Ian (2010). "Reviews - An introduction to the theory of numbers (sixth edition), by G. H. Hardy and E. M. Wright. Pp. 620. 2008. £30 (paperback). ISBN: 978-0-19-921986-5 (Oxford University Press)". The Mathematical Gazette. 94 (529): 184–184. doi:10.1017/S0025557200007464. ISSN 0025-5572.