An Introduction to the Theory of Numbers
Appearance
Author | G. H. Hardy E. M. Wright |
---|---|
Language | English |
Subject | Number theory |
Genre | Textbook |
Published | 1938 |
Publisher | Clarendon Press |
OCLC | 879664 |
An Introduction to the Theory of Numbers is a classic textbook in the field of number theory, by G. H. Hardy and E. M. Wright.
The book grew out of a series of lectures by Hardy and Wright and was first published in 1938.
The third edition added an elementary proof of the prime number theorem, and the sixth edition added a chapter on elliptic curves.
See also
[edit]References
[edit]- Bell, E. T. (1939), "Book Review: An Introduction to the Theory of Numbers", Bulletin of the American Mathematical Society, 45 (7): 507–509, doi:10.1090/S0002-9904-1939-07025-0, ISSN 0002-9904
- Hardy, Godfrey Harold; Wright, E. M. (1938), An introduction to the theory of numbers. (First ed.), Oxford: Clarendon Press, JFM 64.0093.03, Zbl 0020.29201
- Hardy, Godfrey Harold; Wright, E. M. (1954) [1938], An introduction to the theory of numbers (Third ed.), Oxford, at the Clarendon Press, MR 0067125
- Hardy, Godfrey Harold; Wright, E. M. (1971) [1938], An introduction to the theory of numbers (Fourth ed.), The Clarendon Press Oxford University Press
- Hardy, Godfrey Harold; Wright, E. M. (1979) [1938], An introduction to the theory of numbers (Fifth ed.), The Clarendon Press Oxford University Press, ISBN 978-0-19-853171-5, MR 0568909
- Hardy, Godfrey Harold; Wright, E. M. (2008) [1938], Heath-Brown, D. R.; Silverman, J. H. (eds.), An introduction to the theory of numbers (Sixth ed.), Oxford University Press, ISBN 978-0-19-921986-5, MR 2445243
Reviews
[edit]- E. T. Bell (July 1939). "Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers", Bull. Amer. Math. Soc. 45(7): pp. 507–509
- Anderson, Ian (2010). "Reviews - An introduction to the theory of numbers (sixth edition), by G. H. Hardy and E. M. Wright. Pp. 620. 2008. £30 (paperback). ISBN: 978-0-19-921986-5 (Oxford University Press)". The Mathematical Gazette. 94 (529): 184–184. doi:10.1017/S0025557200007464. ISSN 0025-5572.