αr7 RNA
αr7 is a family of bacterial small non-coding RNAs with representatives in a broad group of Alphaproteobacterial species from the order Hyphomicrobiales. The first member of this family (Smr7C 150nt) was found in a Sinorhizobium meliloti 1021 locus located in the chromosome (C). Further homology and structure conservation analysis identified full-length homologs in several nitrogen-fixing symbiotic rhizobia (i.e. R. leguminosarum bv.viciae, R. leguminosarum bv. trifolii, R. etli, and several Mesorhizobium species), in the plant pathogens belonging to Agrobacterium species (i.e. A. tumefaciens, A. vitis, A. radiobacter, and Agrobacterium H13) as well as in a broad spectrum of Brucella species (B. ovis, B. canis, B. abortus and B. microtis, and several biobars of B. melitensis). αr7 RNA species are 134-159 nucleotides (nt) long (Table 1) and share a well defined common secondary structure (Figure 1, Figure 2). αr7 transcripts can be catalogued as trans-acting sRNAs expressed from well-defined promoter regions of independent transcription units within intergenic regions (IGRs) of the Alphaproteobacterial genomes (Figure 4).
Discovery and structure
[edit]Smr7C sRNA was described by del Val et al.[1] in the intergenic regions (IGRs) of the reference S. meliloti 1021 strain (Sinorhizobium meliloti 1021). Northern hybridization experiments detected two RNA species expressed from the smr7C locus, which accumulated differentially in free-living and endosymbiotic bacteria. TAP-based 5'-RACE experiments mapped the transcription start site (TSS) to two close G residues. From the six independent sequences obtained, five mapped to residue 201,681 in the chromosome and one to the upstream residue 201,679. Furthermore, an additional 5'-RACE product could be obtained from this transcript in both TAP- and mock-treated RNA samples. The sequence of this second RACE product mapped the processing site of Smr7C to residue 201,723 nt in the S. meliloti 1021 genome. The 3'-end was assumed to be located at the 201,828 nt position matching the last residue of the consecutive stretch of Us of a bona fide Rho-independent terminator. Parallel and later studies[2][3] in which Smr7C transcript is referred to as sra03 or Sm13, independently confirmed the expression this sRNA in S. melilloti and in its closely related strain 2011. Recent deep sequencing-based characterization of the small RNA fraction (50-350 nt) of S. meliloti 2021 further also confirmed the expression of Smr7C (here referred to as SmelC023), and mapped the 5'- end of the full-length transcript to the same position in the S. meliloti 1021 genome, and the 3' end to position 201,825.[4]
The nucleotide sequence of Smr7C was initially used as query to search against the Rfam database (version 10.0;[5]). This homology search rendered no matches to known bacterial sRNA in this database. Smr7C was next BLASTed with default parameters against all the currently available bacterial genomes (1,615 sequences at 20 April 2011;[6]). The regions exhibiting significant homology to the query sequence (78-89% similarity) were extracted to create a Covariance Model (CM) from a seed alignment using Infernal (version1.0).[7] This CM was used in a further search for new members of the αr7 family in the existing bacterial genomic databases (Table 1) and to create the final CM model (Figure 1).
CM model | Name | GI accession number | begin | end | strand | %GC | length | Organism |
---|---|---|---|---|---|---|---|---|
αr7 | Smr7C | gi|15963753|ref|NC_003047.1| | 201679 | 201828 | + | 64 | 150 | Sinorhizobium meliloti 1021 |
αr7 | Smedr7C | gi|150395228|ref|NC_009636.1| | 3585152 | 3585302 | + | 60 | 151 | Sinorhizobium medicae WSM419 chromosome |
αr7 | Sfr7C | gi|227820587|ref|NC_012587.1| | 3727302 | 3727450 | - | 66 | 149 | Sinorhizobium fredii NGR234 chromosome |
αr7 | Atr7C | gi|159184118|ref|NC_003062.2| | 112535 | 112678 | - | 65 | 144 | Agrobacterium tumefaciens str. C58 chromosome circular |
αr7 | AH13r7C | gi|325291453|ref|NC_015183.1| | 112523 | 112667 | - | 63 | 145 | Agrobacterium sp. H13-3 chromosome |
αr7 | ReCIATr7C | gi|190889639|ref|NC_010994.1| | 205678 | 205811 | - | 61 | 134 | Rhizobium etli CIAT 652 |
αr7 | Arr7CI | gi|222084201|ref|NC_011985.1| | 243240 | 243377 | - | 62 | 138 | Agrobacterium radiobacter K84 chromosome 1 |
αr7 | Rlt2304r7C | gi|209547612|ref|NC_011369.1| | 4280520 | 4280653 | - | 63 | 134 | Rhizobium leguminosarum bv. trifolii WSM2304 chromosome |
αr7 | Avr7CI | gi|222147015|ref|NC_011989.1| | 255869 | 256019 | + | 60 | 151 | Agrobacterium vitis S4 chromosome 1 |
αr7 | Rlvr7C | gi|116249766|ref|NC_008380.1| | 192620 | 192753 | - | 62 | 134 | Rhizobium leguminosarum bv. viciae 3841 |
αr7 | Rlt1325r7C | gi|241202755|ref|NC_012850.1| | 4553564 | 4553697 | - | 62 | 134 | Rhizobium leguminosarum bv. trifolii WSM1325 |
αr7 | ReCFNr7C | gi|86355669|ref|NC_007761.1| | 163762 | 163895 | - | 60 | 134 | Rhizobium etli CFN 42 |
αr7 | Mlr7C | gi|57165207|ref|NC_002678.2| | 2648243 | 2648390 | - | 65 | 148 | Mesorhizobium loti MAFF303099 chromosome |
αr7 | MsBNCr7C | gi|110632362|ref|NC_008254.1| | 4251581 | 4251722 | + | 60 | 142 | Mesorhizobium sp. BNC1 |
αr7 | Mcr7C | gi|319779749|ref|NC_014923.1| | 1781903 | 1782047 | + | 68 | 145 | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome |
αr7 | Bcr7CI | gi|161617991|ref|NC_010103.1| | 134573 | 134715 | - | 62 | 143 | Brucella canis ATCC 23365 chromosome I |
αr7 | Bs23445r7CI | gi|163842277|ref|NC_010169.1| | 134908 | 135050 | - | 62 | 143 | Brucella suis ATCC 23445 chromosome I |
αr7 | Bm16Mr7CI | gi|17986284|ref|NC_003317.1| | 1868345 | 1868487 | + | 62 | 143 | Brucella melitensis bv. 1 str. 16M chromosome I |
αr7 | BaS19r7CI | gi|189023268|ref|NC_010742.1| | 134335 | 134477 | - | 62 | 143 | Brucella abortus S19 chromosome 1 |
αr7 | Bm23457r7CI | gi|225851546|ref|NC_012441.1| | 134555 | 134697 | - | 62 | 143 | Brucella melitensis ATCC 23457 chromosome I |
αr7 | Bs1330r7CI | gi|56968325|ref|NC_004310.3| | 134590 | 134732 | - | 62 | 143 | Brucella suis 1330 chromosome I |
αr7 | Ba19941r7CI | gi|62288991|ref|NC_006932.1| | 135949 | 136091 | - | 62 | 143 | Brucella abortus bv. 1 str. 9-941 chromosome I |
αr7 | Bmar7CI | gi|82698932|ref|NC_007618.1| | 132316 | 132458 | - | 62 | 143 | Brucella melitensis biovar Abortus 2308 chromosome I |
αr7 | Bor7CI | gi|148558820|ref|NC_009505.1| | 134888 | 135029 | - | 63 | 142 | Brucella ovis ATCC 25840 chromosome I |
αr7 | Bmir7CI | gi|256368465|ref|NC_013119.1| | 136167 | 136309 | - | 62 | 143 | Brucella microti CCM 4915 chromosome 1 |
αr7 | Oar7CI | gi|153007346|ref|NC_009667.1| | 149814 | 149972 | - | 58 | 159 | Brucella anthropi ATCC 49188 chromosome 1 |
The results were manually inspected to deduce a consensus secondary structure for the family (Figure 1 and Figure 2). The consensus structure was also independently predicted with the program locARNATE[8] with very similar predictions. The manual inspection of the sequences found with the CM using Infernal allowed finding 26 true homolog sequences, all of them present as single chromosomal copies in the Alphaproteobacterial genomes. The rhizobial species encoding the closer homologs to Smr7C were: S. medicae and S. fredii, two R. leguminosarum trifolii strains (WSM2304 and WSM1325), two R. etli strains CFN 42 and CIAT 652, the reference R. leguminosarum bv. viciae 3841 strain, and the Agrobacterium species A. vitis, A. tumefaciens, A. radiobacter and A. H13 and the Mesorhizobum species loti, M. ciceri and M. BNC. All these sequences showed significant Infernal E-values (3.66E-49 – 2.93E-12) and bit-scores. The rest of the sequences found with the model showed high E-values between (1.58E-10 and 2.88E-09) but lower bit-scores and are encoded by Brucella species (B. ovis, B. canis, B. abortus, B. microtis, several biobars of B. melitensis, and B. anthropi).
-
Figure 1:Covariance Model in stockholm format showing the consensus structure for the αr7 family. Each of the stems represented by the structure line #=GC SS_cons is in a different color, corresponding the red one to the rho independent terminator stem. Covariance Model in stockholm format can be downloaded at gps-tools2.its.yale.edu.[9]
-
Figure 2:Consensus secondary structure of Smr7C and the ar7 family predicted by RNA[10] and RNAalifold.[11] The color scheme of Smr7C represents the base pairs probabilities. The coloring scheme for the ar7 family structure is based on the base pairs conservation: Red: base pair occurring in all sequences used to generate the consensus; yellow: two types of base pairing occur; Green: three types of base pairing occur. The shading of base pairs represents: Saturated, no inconsistent sequences; Pale, one inconsistent sequence; Very pale, two inconsistent sequences.
-
Figure 3:Phylogenetic distribution of known and predicted αr7 genes. Gene numbers are based on computational analysis using the program Infernal. Legend: Smedr7C = Sinorhizobium medicae WSM419 chromosome (NC_009636), Smr7C = Sinorhizobium meliloti 1021 (NC_003047), Sfr7C = Sinorhizobium fredii NGR234 chromosome (NC_012587), Atr7C = Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062), AH13r7C = Agrobacterium sp. H13-3 chromosome (NC_015183), ReCIATr7C = Rhizobium etli CIAT 652 (NC_010994), Arr7CI = Agrobacterium radiobacter K84 chromosome 1 (NC_011985), Rlt2304r7C = Rhizobium leguminosarum bv. trifolii WSM2304 chromosome (NC_011369), Avr7CI = Agrobacterium vitis S4 chromosome 1 (NC_011989), Rlvr7C = Rhizobium leguminosarum bv. viciae 3841 (NC_008380), Rlt1325r7C = Rhizobium leguminosarum bv. trifolii WSM1325 (NC_012850), ReCFNr7C = Rhizobium etli CFN 42 (NC_007761), Mlr7C = Mesorhizobium loti MAFF303099 chromosome (NC_002678), Mcr7C = Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923), Bcr7CI = Brucella canis ATCC 23365 chromosome I (NC_010103), Bs23445r7CI = Brucella suis ATCC 23445 chromosome I (NC_010169), Bm16Mr7CI = Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317), BaS19r7CI = Brucella abortus S19 chromosome 1 (NC_010742), Bm23457r7CI = Brucella melitensis ATCC 23457 chromosome I (NC_012441), Bs1330r7CI = Brucella suis 1330 chromosome I (NC_004310), Ba19941r7CI = Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932), Bmar7CI = Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618), Bor7CI = Brucella ovis ATCC 25840 chromosome I (NC_009505), Bmir7CI = Brucella microti CCM 4915 chromosome 1 (NC_013119), Oar7CI = Brucella anthropi ATCC 49188 chromosome 1 (NC_009667), MsBNCr7C = Mesorhizobium sp. BNC1 (NC_008254).
Expression information
[edit]Parallel studies assessed Smr7C expression in S. meliloti 1021 under different biological conditions; i.e. bacterial growth in TY, minimal medium (MM) and luteolin-MM broth and endosymbiotic bacteria (i.e. mature symbiotic alfalfa nodules).[1] Expression of Smr7C in free-living bacteria was found to be growth-dependent, being the gene strongly down-regulated when bacteria entered the stationary phase. Expression of SmrC7 increased ~13-fold in nodules when compared with free-living bacteria (log phase TY or MM cultures), suggesting the induction of this sRNAs during bacterial infection and/or bacteroid differentiation.[1] SmrC7 expression has also been proved in parallel studies.[2][3][4]
Promoter analysis
[edit]All the promoter regions of the αr7 family members examined so far are very conserved in a sequence stretch extending up to 80 bp upstream of the transcription start site of the sRNA. All closest homologous loci have recognizable σ70-dependent promoters showing a -35/-10 consensus motif CTTAGAC-n17-CTATAT, which has been previously shown to be widely conserved among several other genera in the Alphaproteobacteria.[12] To identify binding sites for other known transcription factors we used the fasta sequences provided by RegPredict,[13][14] and used those position weight matrices (PSWM) provided by RegulonDB.[15][16] We built PSWM for each transcription factor from the RegPredict sequences using the Consensus/Patser program, choosing the best final matrix for motif lengths between 14 and 30 bps a threshold average E-value < 10E-10 for each matrix was established, (see "Thresholded consensus" in gps-tools2.its.yale.edu). Moreover, we searched for conserved unknown motifs using MEME[17][18] and used relaxed regular expressions (i.e. pattern matching) over all promoters of the Smr7C homologs promoters.
This studies revealed a 20 bp conserved motif in ll promoter regions, marked in orange as MEME conserved motif, in (Figure 4), but no significant similarity to known transcription factor binding sites matrices could be established.
Genomic context
[edit]All identified members of the αr7 family are trans-encoded sRNAs transcribed from independent promoters in chromosomal IGRs. Most of the neighboring genes of the seed alignment's members were not annotated and thus were further manually curated.[19][20][21]
The αr7 sRNAs' genomic regions of the Sinorhizobium, Rhizobium and Agrobacterium group members exhibited a great degree of conservation with the upstream and downstream genes coding for a DNA polymerase, and a MarR family transcriptional regulator, respectively. Partial synteny of the αr7 genomic regions was observed in the Mesorhizobium and Brucella group, where instead of the MarR family transcriptional regulator gene, a peptidase encoding gene was found.
Family | Feature | Name | Strand | Begin | End | Protein name | Annotation | Organism |
---|---|---|---|---|---|---|---|---|
αr7 | gene | Smed_3381 | R | 3581962 | 3584976 | YP_001329037.1 | DNA polymerase | Sinorhizobium medicae WSM419 chromosome (NC_009636) |
αr7 | sRNA | Smedr7C | D | 3585152 | 3585302 | - | - | Sinorhizobium medicae WSM419 chromosome (NC_009636) |
αr7 | gene | Smed_3382 | D | 3585430 | 3585873 | YP_001329038.1 | MarR family transcriptional regulator | Sinorhizobium medicae WSM419 chromosome (NC_009636) |
αr7 | gene | SMc02850 | R | 198469 | 201483 | NP_384281.1 | DNA polymerase | Sinorhizobium meliloti 1021 (NC_003047) |
αr7 | sRNA | Smr7C | D | 201679 | 201828 | - | - | Sinorhizobium meliloti 1021 (NC_003047) |
αr7 | gene | SMc02851 | D | 201956 | 202399 | NP_384282.1 | MarR family transcriptional regulator | Sinorhizobium meliloti 1021 (NC_003047) |
αr7 | gene | NGR_c35130 | R | 3725266 | 3726657 | YP_002827990.1 | peptidase M2 | Sinorhizobium fredii NGR234 chromosome (NC_012587) |
αr7 | sRNA | Sfr7C | R | 3727302 | 3727450 | - | - | Sinorhizobium fredii NGR234 chromosome (NC_012587) |
αr7 | gene | NGR_c35150 | D | 3727551 | 3730673 | YP_002827992.1 | DNA polymerase | Sinorhizobium fredii NGR234 chromosome (NC_012587) |
αr7 | gene | Atu0109 | R | 112000 | 112446 | NP_353144.2 | MarR family transcriptional regulator | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) |
αr7 | sRNA | Atr7C | R | 112535 | 112678 | - | - | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) |
αr7 | gene | Atu8081 | R | 112724 | 113134 | NP_353145.1 | hypothetical protein | Agrobacterium tumefaciens str. C58 chromosome circular (NC_003062) |
αr7 | gene | AGROH133_02963 | R | 111988 | 112422 | YP_004277416.1 | MarR family transcriptional regulator | Agrobacterium sp. H13-3 chromosome (NC_015183) |
αr7 | sRNA | AH13r7C | R | 112523 | 112667 | - | - | Agrobacterium sp. H13-3 chromosome (NC_015183) |
αr7 | gene | AGROH133_02965 | D | 112837 | 115824 | YP_004277417.1 | DNA polymerase | Agrobacterium sp. H13-3 chromosome (NC_015183) |
αr7 | gene | RHECIAT_CH0000189 | R | 205143 | 205559 | YP_001976363.1 | MarR family transcriptional regulator | Rhizobium etli CIAT 652 (NC_010994) |
αr7 | sRNA | ReCIATr7C | R | 205678 | 205811 | - | - | Rhizobium etli CIAT 652 (NC_010994) |
αr7 | gene | RHECIAT_CH0000190 | D | 205998 | 208991 | YP_001976364.1 | DNA polymerase | Rhizobium etli CIAT 652 (NC_010994) |
αr7 | gene | Arad_0270 | R | 242680 | 243111 | YP_002542926.1 | MarR family transcriptional regulator | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) |
αr7 | sRNA | Arr7CI | R | 243240 | 243377 | - | - | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) |
αr7 | gene | Arad_0271 | D | 243543 | 246545 | YP_002542927.1 | DNA polymerase | Agrobacterium radiobacter K84 chromosome 1 (NC_011985) |
αr7 | gene | Rleg2_4102 | R | 4279984 | 4280400 | YP_002283590.1 | MarR family transcriptional regulator | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) |
αr7 | sRNA | Rlt2304r7C | R | 4280520 | 4280653 | - | - | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) |
αr7 | gene | Rleg2_4103 | D | 4280807 | 4283806 | YP_002283591.1 | DNA polymerase | Rhizobium leguminosarum bv trifolii WSM2304 chromosome (NC_011369) |
αr7 | gene | Avi_0299 | R | 252729 | 255707 | YP_002548197.1 | DNA polymerase | Agrobacterium vitis S4 chromosome 1 (NC_011989) |
αr7 | sRNA | Avr7CI | D | 255869 | 256019 | - | - | Agrobacterium vitis S4 chromosome 1 (NC_011989) |
αr7 | gene | Avi_0300 | D | 256094 | 256543 | YP_002548198.1 | MarR family transcriptional regulator | Agrobacterium vitis S4 chromosome 1 (NC_011989) |
αr7 | gene | RL0159 | R | 192083 | 192499 | YP_765764.1 | MarR family transcriptional regulator | Rhizobium leguminosarum bv viciae 3841 (NC_008380) |
αr7 | sRNA | Rlvr7C | R | 192620 | 192753 | - | - | Rhizobium leguminosarum bv viciae 3841 (NC_008380) |
αr7 | gene | RL0160 | D | 192994 | 196044 | YP_765765.1 | DNA polymerase | Rhizobium leguminosarum bv viciae 3841 (NC_008380) |
αr7 | gene | Rleg_4422 | R | 4553028 | 4553444 | YP_002978199.1 | MarR family transcriptional regulator | Rhizobium leguminosarum bv. trifolii WSM1325 (NC_012850) |
αr7 | sRNA | Rlt1325r7C | R | 4553564 | 4553697 | - | - | Rhizobium leguminosarum bv. trifolii WSM1325 (NC_012850) |
αr7 | gene | Rleg_4423 | D | 4553938 | 4556988 | YP_002978200.1 | DNA polymerase | Rhizobium leguminosarum bv. trifolii WSM1325 (NC_012850) |
αr7 | gene | RHE_CH00150 | R | 163227 | 163643 | YP_467702.1 | MarR family transcriptional regulator | Rhizobium etli CFN 42 (NC_007761) |
αr7 | sRNA | ReCFNr7C | R | 163762 | 163895 | - | - | Rhizobium etli CFN 42 (NC_007761) |
αr7 | gene | RHE_CH00151 | D | 164051 | 167050 | YP_467703.1 | DNA polymerase | Rhizobium etli CFN 42 (NC_007761) |
αr7 | gene | mll3297 | R | 2646732 | 2648117 | NP_104434.1 | peptidase M2 | Mesorhizobium loti MAFF303099 chromosome (NC_002678) |
αr7 | sRNA | Mlr7C | R | 2648243 | 2648390 | - | - | Mesorhizobium loti MAFF303099 chromosome (NC_002678) |
αr7 | gene | mlr3298 | D | 2648514 | 2651525 | NP_104435.1 | DNA polymerase | Mesorhizobium loti MAFF303099 chromosome (NC_002678) |
αr7 | gene | Meso_3945 | R | 4248490 | 4251426 | YP_676477.1 | DNA polymerase | Mesorhizobium sp. BNC1 (NC_008254) |
αr7 | sRNA | MsBNCr7C | D | 4251581 | 4251722 | - | - | Mesorhizobium sp. BNC1 (NC_008254) |
αr7 | gene | Meso_3946 | R | 4251731 | 4253149 | YP_676478.1 | 6-phosphogluconate dehydrogenase | Mesorhizobium sp. BNC1 (NC_008254) |
αr7 | gene | Mesci_1702 | R | 1778784 | 1781777 | YP_004140907.1 | DNA polymerase | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) |
αr7 | sRNA | Mcr7C | D | 1781903 | 1782047 | - | - | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) |
αr7 | gene | Mesci_1703 | D | 1782152 | 1783537 | YP_004140908.1 | peptidase M2 | Mesorhizobium ciceri biovar biserrulae WSM1271 chromosome (NC_014923) |
αr7 | gene | BCAN_A0124 | R | 132964 | 134379 | YP_001591996.1 | peptidase M2 | Brucella canis ATCC 23365 chromosome I (NC_010103) |
αr7 | sRNA | Bcr7CI | R | 134573 | 134715 | - | - | Brucella canis ATCC 23365 chromosome I (NC_010103) |
αr7 | gene | BCAN_A0126 | D | 134940 | 137879 | YP_001591998.1 | DNA polymerase | Brucella canis ATCC 23365 chromosome I (NC_010103) |
αr7 | gene | BSUIS_A0126 | R | 133299 | 134714 | YP_001626800.1 | peptidase M2 | Brucella suis ATCC 23445 chromosome I (NC_010169) |
αr7 | sRNA | Bs23445r7CI | R | 134908 | 135050 | - | - | Brucella suis ATCC 23445 chromosome I (NC_010169) |
αr7 | gene | BSUIS_A0128 | D | 135275 | 138211 | YP_001626802.1 | DNA polymerase | Brucella suis ATCC 23445 chromosome I (NC_010169) |
αr7 | gene | BMEI1825 | R | 1865184 | 1868168 | NP_540742.1 | DNA polymerase | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) |
αr7 | sRNA | Bm16Mr7CI | D | 1868345 | 1868487 | - | - | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) |
αr7 | gene | BMEI1827 | D | 1868645 | 1870096 | NP_540744.1 | peptidase M2 | Brucella melitensis bv. 1 str. 16M chromosome I (NC_003317) |
αr7 | gene | BAbS19_I01130 | R | 132726 | 134141 | YP_001934145.1 | peptidase M2 | Brucella abortus S19 chromosome 1 (NC_010742) |
αr7 | sRNA | BaS19r7CI | R | 134335 | 134477 | - | - | Brucella abortus S19 chromosome 1 (NC_010742) |
αr7 | gene | BAbS19_I01140 | D | 134702 | 137638 | YP_001934146.1 | DNA polymerase | Brucella abortus S19 chromosome 1 (NC_010742) |
αr7 | gene | BMEA_A0128 | R | 132946 | 134361 | YP_002731894.1 | peptidase M2 | Brucella melitensis ATCC 23457 chromosome I (NC_012441) |
αr7 | sRNA | Bm23457r7CI | R | 134555 | 134697 | - | - | Brucella melitensis ATCC 23457 chromosome I (NC_012441) |
αr7 | gene | BMEA_A0130 | D | 134922 | 137858 | YP_002731896.1 | DNA polymerase | Brucella melitensis ATCC 23457 chromosome I (NC_012441) |
αr7 | gene | BR0121 | R | 132981 | 134396 | NP_697162.1 | peptidase M2 | Brucella suis 1330 chromosome I (NC_004310) |
αr7 | sRNA | Bs1330r7CI | R | 134590 | 134732 | - | - | Brucella suis 1330 chromosome I (NC_004310) |
αr7 | gene | BR0123 | D | 134957 | 137896 | NP_697164.1 | DNA polymerase | Brucella suis 1330 chromosome I (NC_004310) |
αr7 | gene | BruAb1_0118 | R | 134340 | 135755 | YP_220895.1 | peptidase M2 | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) |
αr7 | sRNA | Ba19941r7CI | R | 135949 | 136091 | - | - | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) |
αr7 | gene | BruAb1_0120 | D | 136316 | 139252 | YP_220897.1 | DNA polymerase | Brucella abortus bv. 1 str. 9-941 chromosome I (NC_006932) |
αr7 | gene | BAB1_0118 | R | 130707 | 132122 | YP_413614.1 | peptidase M2 | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) |
αr7 | sRNA | Bmar7CI | R | 132316 | 132458 | - | - | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) |
αr7 | gene | BAB1_0120 | D | 132683 | 135619 | YP_413616.1 | DNA polymerase | Brucella melitensis biovar Abortus 2308 chromosome I (NC_007618) |
αr7 | gene | BOV_0118 | R | 133280 | 134695 | YP_001258159.1 | peptidase M2 | Brucella ovis ATCC 25840 chromosome I (NC_009505) |
αr7 | sRNA | Bor7CI | R | 134888 | 135029 | - | - | Brucella ovis ATCC 25840 chromosome I (NC_009505) |
αr7 | gene | BOV_0119 | D | 135254 | 138190 | YP_001258160.1 | DNA polymerase | Brucella ovis ATCC 25840 chromosome I (NC_009505) |
αr7 | gene | BMI_I124 | R | 134558 | 135973 | YP_003106091.1 | peptidase M2 | Brucella microti CCM 4915 chromosome 1 (NC_013119) |
αr7 | sRNA | Bmir7CI | R | 136167 | 136309 | - | - | Brucella microti CCM 4915 chromosome 1 (NC_013119) |
αr7 | gene | BMI_I126 | D | 136534 | 139470 | YP_003106093.1 | DNA polymerase | Brucella microti CCM 4915 chromosome 1 (NC_013119) |
αr7 | gene | Oant_0136 | R | 148306 | 149715 | YP_001368696.1 | peptidase M2 | Brucella anthropi ATCC 49188 chromosome 1 (NC_009667) |
αr7 | sRNA | Oar7CI | R | 149814 | 149972 | - | - | Brucella anthropi ATCC 49188 chromosome 1 (NC_009667) |
αr7 | gene | Oant_0137 | D | 150127 | 153057 | YP_001368697.1 | DNA polymerase | Brucella anthropi ATCC 49188 chromosome 1 (NC_009667) |
Data download
[edit]Covariance Model in stockholm format can be downloaded at gps-tools2.its.yale.edu.[9]
References
[edit]- ^ a b c del Val C, Rivas E, Torres-Quesada O, Toro N, Jiménez-Zurdo JI (2007). "Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics". Mol Microbiol. 66 (5): 1080–1091. doi:10.1111/j.1365-2958.2007.05978.x. PMC 2780559. PMID 17971083.
- ^ a b Vincent M Ulvé; Emeric W Sevin; Angélique Chéron; Frédérique Barloy-Hubler (2007). "Identification of chromosomal alpha-proteobacterial small RNAs by comparative genome analysis and detection in Sinorhizobium meliloti strain 1021". BMC Genomics. 8 (467): 467. doi:10.1186/1471-2164-8-467. PMC 2245857. PMID 18093320.
- ^ a b Valverde, Claudio; Livny, Jonathan; Schlüter, Jan-Philip; Reinkensmeier, Jan; Becker, Anke; Parisi, Gustavo (2009). "rediction of Sinorhizobium meliloti sRNA genes and experimental detection in strain 2011". BMC Genomics. 9 (406): 416. doi:10.1186/1471-2164-9-416. PMC 2573895. PMID 18793445.
- ^ a b Schlüter JP, Reinkensmeier J, Daschkey S, Evguenieva-Hackenberg E, Janssen S, Jänicke S, Becker JD, Giegerich R, Becker A (2010). "A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti". BMC Genomics. 11 (245): 436. doi:10.1186/1471-2164-11-436. PMC 3091635. PMID 20637113.
- ^ "Sanger – Software". Retrieved 14 May 2012.
- ^ "NCBI". Retrieved 14 May 2012.
- ^ Nawrocki EP, Kolbe DL, Eddy SR (2009). "Infernal 1.0: inference of RNA alignments". Bioinformatics. 25 (10): 1335–1337. doi:10.1093/bioinformatics/btp157. PMC 2732312. PMID 19307242.
- ^ Will S, Reiche K, Hofacker IL, Stadler PF, Backofen R (2007). "Inferring Noncoding RNA Families and Classes by Means of Genome-Scale Structure-Based Clustering". PLOS Comput Biol. 4 (65): e65. Bibcode:2007PLSCB...3...65W. doi:10.1371/journal.pcbi.0030065. PMC 1851984. PMID 17432929.
- ^ a b "Covariance Model in stockholm format". Retrieved 14 May 2012.
- ^ I. L. Hofacker; W. Fontana; P. F. Stadler; L. S. Bonhoeffer; M. Tacke; P. Schuster (1994). "Fast folding and comparison of RNA secondary structures". Monatshefte für Chemie. 125 (2): 167–188. doi:10.1007/BF00818163. S2CID 19344304.
- ^ Stephan H Bernhart; Ivo L Hofacker; Sebastian Will; Andreas R Gruber; Peter F Stadler (2008). "RNAalifold: improved consensus structure prediction for RNA alignments". BMC Bioinformatics. 9 (474): 474. doi:10.1186/1471-2105-9-474. PMC 2621365. PMID 19014431.
- ^ MacLellan SR, MacLean AM, Finan TM (2006). "Promoter prediction in the rhizobia". Microbiology. 152 (6): 1751–1763. doi:10.1099/mic.0.28743-0. PMID 16735738.
- ^ Novichkov PS, Rodionov DA, Stavrovskaya ED, Novichkova ES, Kazakov AE, Gelfand MS, Arkin AP, Mironov AA, Dubchak I (2010). "RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach". Nucleic Acids Research. 38 (Web Server issue): W299 – W307. doi:10.1093/nar/gkq531. PMC 2896116. PMID 20542910.
- ^ "regpredict.lbl.gov". Archived from the original on 23 March 2012. Retrieved 14 May 2012.
- ^ Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-Jacinto V, Weiss V, Garcia-Sotelo JS, Lopez-Fuentes A, Porron-Sotelo L, Alquicira-Hernandez S, Medina-Rivera A, Martinez-Flores I, Alquicira-Hernandez K, Martinez-Adame R, Bonavides-Martinez C, Miranda-Rios J, Huerta AM, Mendoza-Vargas A, Collado-Torres L, Taboada B, Vega-Alvarado L, Olvera M, Olvera L, Grande R, Morett E, Collado-Vides J (2010). "RegulonDB version 7.0: transcriptional regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units)". Nucleic Acids Research. 39 (Database issue): D98 – D105. doi:10.1093/nar/gkq1110. PMC 3013702. PMID 21051347.
- ^ "regulondb.ccg.unam.mx". Retrieved 14 May 2012.
- ^ Bailey TL, Elkan C (1994). "Fitting a mixture model by expectation maximization to discover motifs in biopolymers". Proceedings. International Conference on Intelligent Systems for Molecular Biology. 2: 28–36. PMID 7584402.
- ^ "meme.sdsc.edu/meme4_6_1/intro.html". Archived from the original on 29 September 2011. Retrieved 14 May 2012.
- ^ Vinayagam A, del Val C, Schubert F, Eils R, Glatting KH, Suhai S, König R (2006). "GOPET: a tool for automated predictions of Gene Ontology terms". BMC Bioinformatics. 7: 171. doi:10.1186/1471-2105-7-161. PMC 1434778. PMID 16549020.
- ^ Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005). "Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research". Bioinformatics. 21 (18): 3674–3676. doi:10.1093/bioinformatics/bti610. PMID 16081474.
- ^ del Val C, Ernst P, Falkenhahn M, Fladerer C, Glatting KH, Suhai S, Hotz-Wagenblatt A (July 2007). "ProtSweep, 2Dsweep and DomainSweep: protein analysis suite at DKFZ". Nucleic Acids Res. 35 (Web Server issue): W444–50. doi:10.1093/nar/gkm364. PMC 1933246. PMID 17526514.