Vitamin C: Difference between revisions
Reverted 1 edit by 174.47.14.121; Rv factual error. (TW) |
No edit summary |
||
Line 320: | Line 320: | ||
===Chance of overdose=== |
===Chance of overdose=== |
||
Vitamin C exhibits remarkably low toxicity. The [[LD50|LD<sub>50</sub>]] (the dose that will kill 50% of a population) in rats is generally accepted to be 11.9 grams per kilogram of body weight when taken orally.<ref name="Oxford">{{cite web |url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |title=Safety (MSDS) data for ascorbic acid |accessdate= 2007-02-21 |date= 2005-10-09 | publisher= [[Oxford University]] }}</ref> The LD<sub>50</sub> in humans remains unknown, owing to [[medical ethics]] that preclude experiments that would put patients at risk of harm. However, as with all substances tested in this way, the LD<sub>50</sub> is taken as a guide to its toxicity in humans and no data to contradict this has been found. |
Vitamin C exhibits remarkably low toxicity. The [[LD50|LD<sub>50</sub>]] (the dose that will kill 50% of a population) in rats is generally accepted to be 11.9 grams per kilogram of body weight when taken orally.<ref name="Oxford">{{cite web |url=http://physchem.ox.ac.uk/MSDS/AS/ascorbic_acid.html |title=Safety (MSDS) data for ascorbic acid |accessdate= 2007-02-21 |date= 2005-10-09 | publisher= [[Oxford University]] }}</ref> The LD<sub>50</sub> in humans remains unknown, owing to [[medical ethics]] that preclude experiments that would put patients at risk of harm. However, as with all substances tested in this way, the LD<sub>50</sub> is taken as a guide to its toxicity in humans and no data to contradict this has been found. Josh, you won't be able to overdose from taking too many Emergen-C packets. |
||
==Natural and synthetic dietary sources== |
==Natural and synthetic dietary sources== |
Revision as of 17:26, 25 March 2010
Clinical data | |
---|---|
Other names | L-ascorbic acid |
Pregnancy category |
|
Routes of administration | oral |
ATC code | |
Legal status | |
Legal status |
|
Pharmacokinetic data | |
Bioavailability | rapid & complete |
Protein binding | negligible |
Elimination half-life | 30 minutes |
Excretion | renal |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
E number | E300 (antioxidants, ...) |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.000.061 |
Chemical and physical data | |
Formula | C6H8O6 |
Molar mass | 176.14 grams per mole g·mol−1 |
Density | 1.694 g/cm3 |
Melting point | 190 to 192 °C (374 to 378 °F) decomposes |
Boiling point | 553 °C (1,027 °F) |
(verify) |
Vitamin C or L-ascorbic acid is an essential nutrient for humans and certain other animal species, in which it functions as a vitamin. Ascorbate (an ion of ascorbic acid) is required for a range of essential metabolic reactions in all animals and plants. It is made internally by almost all organisms; notable mammalian group exceptions are most or all of the order chiroptera (bats), and one of the two major primate suborders, the Anthropoidea (Haplorrhini) (tarsiers, monkeys and apes, including mankind). Ascorbic acid is also not synthesized by guinea pigs and some species of birds and fish. All species that do not synthesize ascorbate require it in the diet. Deficiency in this vitamin causes the disease scurvy in humans.[1][2][3] It is also widely used as a food additive.[4]
The pharmacophore of vitamin C is the ascorbate ion. In living organisms, ascorbate is an anti-oxidant, since it protects the body against oxidative stress,[5] and is a cofactor in at least eight enzymatic reactions, including several collagen synthesis reactions that cause the most severe symptoms of scurvy when they are dysfunctional.[6]
Scurvy has been known since ancient times. People in many parts of the world assumed it was caused by a lack of fresh plant foods. The British Navy started giving sailors lime juice to prevent scurvy in 1795.[7] Ascorbic acid was finally isolated in 1932 and commercially synthesized in 1934. The uses and recommended daily intake of vitamin C are matters of on-going debate, with RDI ranging from 45 to 95 mg/day. Proponents of megadosage propose from 200 mg to more than 2000 mg/day. The fraction of vitamin C in the diet that is absorbed and the rate at which the excess is eliminated from the body vary strongly with the dose.
A recent meta-analysis of 68 reliable antioxidant supplementation experiments, involving a total of 232,606 individuals, concluded that consuming additional ascorbate from supplements may not be as beneficial as thought,[8] though most of these studies so far generally do not evaluate the effects of megadosages at the levels recommended by megadosage activists.
Biological significance
Vitamin C is purely the L-enantiomer of ascorbate; the opposite D-enantiomer has no physiological significance. Both forms are mirror images of the same molecular structure. When L-ascorbate, which is a strong reducing agent, carries out its reducing function, it is converted to its oxidized form, L-dehydroascorbate.[6] L-dehydroascorbate can then be reduced back to the active L-ascorbate form in the body by enzymes and glutathione.[9] During this process semidehydroascorbic acid radical is formed. Ascorbate free radical reacts poorly with oxygen, and thus, will not create a superoxide. Instead two semidehydroascorbate radicals will react and form one ascorbate and one dehydroascorbate. With the help of glutathione, dehydroxyascorbate is converted back to ascorbate.[10] The presence of glutathione is crucial since it spares ascorbate and improves antioxidant capacity of blood.[11] Without it dehydroxyascorbate could not convert back to ascorbate.
L-Ascorbate is a weak sugar acid structurally related to glucose that naturally occurs attached either to a hydrogen ion, forming ascorbic acid, or to a metal ion, forming a mineral ascorbate.
Biosynthesis
The vast majority of animals and plants are able to synthesize their own vitamin C, through a sequence of four enzyme-driven steps, which convert glucose to vitamin C.[6] The glucose needed to produce ascorbate in the liver (in mammals and perching birds) is extracted from glycogen; ascorbate synthesis is a glycogenolysis-dependent process.[12] In reptiles and birds the biosynthesis is carried out in the kidneys.
Among the animals that have lost the ability to synthesise vitamin C are simians (to be specific, one of two major primate suborders, the anthropoidea, also called haplorrhini, which includes humans), guinea pigs, a number of species of passerine birds (but not all of them—there is some suggestion that the ability was lost separately a number of times in birds), and many (probably all) major families of bats, including major insect and fruit-eating bat families. These animals all lack the L-gulonolactone oxidase (GULO) enzyme, which is required in the last step of vitamin C synthesis, because they have a defective form of the gene for the enzyme (Pseudogene ΨGULO).[13] Some of these species (including humans) are able to make do with the lower levels available from their diets by recycling oxidised vitamin C.[14]
Most simians consume the vitamin in amounts 10 to 20 times higher than that recommended by governments for humans.[15] This discrepancy constitutes much of the basis of the controversy on current recommended dietary allowances. It is countered by arguments that humans are very good at conserving dietary vitamin C, and are able to maintain blood levels of vitamin C comparable with other simians, on a far smaller dietary intake.
An adult goat, a typical example of a vitamin C-producing animal, will manufacture more than 13 g of vitamin C per day in normal health and the biosynthesis will increase "manyfold under stress".[16] Trauma or injury has also been demonstrated to use up large quantities of vitamin C in humans.[17] Some microorganisms such as the yeast Saccharomyces cerevisiae have been shown to be able to synthesize vitamin C from simple sugars.[18][19]
Vitamin C in evolution
Venturi and Venturi [20][21] suggested that the antioxidant action of ascorbic acid developed first in the plant kingdom when, about 500 million years ago (Mya), plants began to adapt to antioxidant-mineral deficient fresh-waters of estuaries. Some biologists suggested that many vertebrates had developed their metabolic adaptive strategies in estuary environment.[22] In this theory, some 400-300 Mya, when living plants and animals first began the move from the sea to rivers and land, environmental iodine deficiency was a challenge to the evolution of terrestrial life.[23] In plants, animals and fishes, the terrestrial diet became deficient in many essential antioxidant marine micronutrients, including iodine, selenium, zinc, copper, manganese, iron, etc. Freshwater algae and terrestrial plants, in replacement of marine antioxidants, slowly optimized the production of other endogenous antioxidants such as ascorbic acid, polyphenols, carotenoids, tocopherols etc., some of which became essential “vitamins” in the diet of terrestrial animals (vitamins C, A, E, etc.).
Ascorbic acid or vitamin C is a common enzymatic cofactor in mammals used in the synthesis of collagen. Ascorbate is a powerful reducing agent capable of rapidly scavenging a number of reactive oxygen species (ROS). Freshwater teleost fishes also require dietary vitamin C in their diet or they will get scurvy. The most widely recognized symptoms of vitamin C deficiency in fishes are scoliosis, lordosis and dark skin coloration. Freshwater salmonids also show impaired collagen formation, internal/fin haemorrhage, spinal curvature and increased mortality. If these fishes are housed in seawater with algae and phytoplankton, then vitamin supplementation seems to be less important, it is presumed because of the availability of other, more ancient, antioxidants in natural marine environment.[24]
Some scientists have suggested that the loss of human ability to make vitamin C may have caused a rapid simian evolution into modern man.[25][26][27] However, the loss of ability to make vitamin C in simians must have occurred much farther back in evolutionary history than the emergence of humans or even apes, since it evidently occurred rather soon after the appearance of the first primates, yet sometime after the split of early primates into its two major suborders Haplorrhini (which cannot make vitamin C) and its sister suborder of non-tarsier prosimians, the Strepsirrhini ("wet-nosed" primates), which retained the ability to make vitamin C.[28] According to molecular clock dating, these two suborder primate branches parted ways about 63 to 60 Mya [29] Approximately three to five million years later (58 Mya), only a short time afterward from an evolutionary perspective, the infraorder Tarsiiformes, whose only remaining family is that of the tarsier (Tarsiidae), branched off from the other haplorrhines.[30][31] Since tarsiers also cannot make vitamin C, this implies the mutation had already occurred, and thus must have occurred between these two marker points (63 to 58 Mya).
It has been noted that the loss of the ability to synthesize ascorbate strikingly parallels the evolutionary loss of the ability to break down uric acid, also a characteristic of primates. Uric acid and ascorbate are both strong reducing agents. This has led to the suggestion that, in higher primates, uric acid has taken over some of the functions of ascorbate.[32]
Absorption, transport, and disposal
Ascorbic acid is absorbed in the body by both active transport and simple diffusion. Sodium-Dependent Active Transport - Sodium-Ascorbate Co-Transporters (SVCTs) and Hexose transporters (GLUTs) are the two transporters required for absorption. SVCT1 and SVCT2 imported the reduced form of ascorbate across plasma membrane.[33] GLUT1 and GLUT3 are the two glucose transporters and only transfer dehydroascorbic acid form of Vitamin C.[34] Although dehydroascorbic acid is absorbed in higher rate than ascorbate, the amount of dehydroascorbic acid found in plasma and tissues under normal conditions is low, as cells rapidly reduce dehydroascorbic acid to ascorbate.[35][36] Thus, SVCTs appear to be the predominant system for vitamin C transport in the body.
SVCT2 is involved in vitamin C transport in almost every tissue,[33] the notable exception being red blood cells, which lose SVCT proteins during maturation.[37] "SVCT2 knockout" animals genetically engineered to lack this functional gene, die shortly after birth,[38] suggesting that SVCT2-mediated vitamin C transport is necessary for life.
With regular intake the absorption rate varies between 70 to 95%. However, the degree of absorption decreases as intake increases. At high intake (12g), fractional human absorption of ascorbic acid may be as low as 16%; at low intake (<20 mg) the absorption rate can reach up to 98%.[39] Ascorbate concentrations over renal re-absorption threshold pass freely into the urine and are excreted. At high dietary doses (corresponding to several hundred mg/day in humans) ascorbate is accumulated in the body until the plasma levels reach the renal resorption threshold, which is about 1.5 mg/dL in men and 1.3 mg/dL in women. Concentrations in the plasma larger than this value (thought to represent body saturation) are rapidly excreted in the urine with a half-life of about 30 minutes; concentrations less than this threshold amount are actively retained by the kidneys, and half-life for the remainder of the vitamin C store in the body increases greatly, with the half-life lengthening as the body stores are depleted.[40]
Although the body's maximal store of vitamin C is largely determined by the renal threshold for blood, there are many tissues that maintain vitamin C concentrations far higher than in blood. Biological tissues that accumulate over 100 times the level in blood plasma of vitamin C are the adrenal glands, pituitary, thymus, corpus luteum, and retina.[41] Those with 10 to 50 times the concentration present in blood plasma include the brain, spleen, lung, testicle, lymph nodes, liver, thyroid, small intestinal mucosa, leukocytes, pancreas, kidney and salivary glands.
Ascorbic acid can be oxidized (broken down) in the human body by the enzyme L-ascorbate oxidase. Ascorbate that is not directly excreted in the urine as a result of body saturation or destroyed in other body metabolism is oxidized by this enzyme and removed.
Deficiency
Scurvy is an avitaminosis resulting from lack of vitamin C, since without this vitamin, the synthesised collagen is too unstable to perform its function. Scurvy leads to the formation of liver spots on the skin, spongy gums, and bleeding from all mucous membranes. The spots are most abundant on the thighs and legs, and a person with the ailment looks pale, feels depressed, and is partially immobilized. In advanced scurvy there are open, suppurating wounds and loss of teeth and, eventually, death. The human body can store only a certain amount of vitamin C,[42] and so the body soon depletes itself if fresh supplies are not consumed.
It has been shown that smokers who have diets poor in vitamin C are at a higher risk of lung-borne diseases than those smokers who have higher concentrations of vitamin C in the blood.[43]
Nobel prize winner Linus Pauling and Dr. G. C. Willis have asserted that chronic long term low blood levels of vitamin C (chronic scurvy) is a cause of atherosclerosis.[44]
Western societies generally consume sufficient Vitamin C to prevent scurvy. In 2004, a Canadian Community health survey reported that Canadians of 19 years and above have intakes of vitamin C from food of 133 mg/d for males and 120 mg/d for females,[45] that is higher than the RDA recommendation.
Notable human dietary studies of experimentally-induced scury have been conducted on concientious objectors during WW II in Britain, and on Iowa state prisoner "volunteers" in the late 1960s. These studies both found that all obvious symptoms of scurvy previously induced by an experimental scorbutic diet with extremely low vitamin C content, could be completely reversed by additional vitamin C supplementation of only 10 mg a day. In these experiments, there was no clinical difference between men given 70 mg vitamin C per day (which produced blood level of vitamin C of about 0.55 mg/dl (about 1/3 of tissue saturation levels), and those given 10 mg per day. Men in the prison study developed the first signs of scurvy about 4 weeks after starting the vitamin C free diet, whereas in the British study, six to eight months were required, possibly due to the pre-loading of this group with a 70 mg/day supplement for six weeks before the scorbutic diet was fed.[46] Men in both studies on a diet devoid or nearly devoid of vitamin C had blood levels of vitamin C too low to be accurately measured when they developed signs of scurvy, and in the Iowa study, at this time were estimated (by labeled vitamin C dilution) to have a body pool of less than 300 mg, with daily turnover of only 2.5 mg/day.[47]
Moderately higher blood levels of vitamin C measured in healthy persons have been found to be prospectively correlated with decreased risk of cardiovascular disease and ischaemic heart disease, and an increase life expectancy. The same study found an inverse relationship between blood vitamin C levels and cancer risk in men, but not women. An increase in blood level of 20 micromol/L of vitamin C (about 0.35 mg/dL, and representing a theoretical additional 50 grams of fruit and vegetables per day) was found epidemiologically to reduce the all-cause risk of mortality, four years after measuring it, by about 20%.[48] However, because this was not an intervention study, causation could not be proven, and vitamin C blood levels acting as a proxy market for other differences between the groups could not be ruled out. However, the prospective nature of the study did rule out vitamin-C lowering effects of terminal illness or end-of-life poor health.
Studies with much higher doses of vitamin C, usually between 200 and 6000 mg, for the treatment of infections and wounds have shown inconsistent results.[49] While combinations of antioxidants seem to improve wound healing,[50] this effect cannot be achieved with vitamin C alone.[51]
History of human understanding
The need to include fresh plant food or raw animal flesh in the diet to prevent disease was known from ancient times. Native people living in marginal areas incorporated this into their medicinal lore. For example, spruce needles were used in temperate zones in infusions, or the leaves from species of drought-resistant trees in desert areas. In 1536, the French explorer Jacques Cartier, exploring the St. Lawrence River, used the local natives' knowledge to save his men who were dying of scurvy. He boiled the needles of the arbor vitae tree to make a tea that was later shown to contain 50 mg of vitamin C per 100 grams.[52][53]
Throughout history, the benefit of plant food to survive long sea voyages has been occasionally recommended by authorities. John Woodall, the first appointed surgeon to the British East India Company, recommended the preventive and curative use of lemon juice in his book, The Surgeon's Mate, in 1617. The Dutch writer, Johann Bachstrom, in 1734, gave the firm opinion that "scurvy is solely owing to a total abstinence from fresh vegetable food, and greens, which is alone the primary cause of the disease."[54]
While the earliest documented case of scurvy was described by Hippocrates around the year 400 BC, the first attempt to give scientific basis for the cause of this disease was by a ship's surgeon in the British Royal Navy, James Lind. Scurvy was common among those with poor access to fresh fruit and vegetables, such as remote, isolated sailors and soldiers. While at sea in May 1747, Lind provided some crew members with two oranges and one lemon per day, in addition to normal rations, while others continued on cider, vinegar, sulfuric acid or seawater, along with their normal rations. In the history of science this is considered to be the first occurrence of a controlled experiment comparing results on two populations of a factor applied to one group only with all other factors the same. The results conclusively showed that citrus fruits prevented the disease. Lind published his work in 1753 in his Treatise on the Scurvy.[55]
Lind's work was slow to be noticed, partly because his Treatise was not published until six years after his study, and also because he recommended a lemon juice extract known as "rob".[56] Fresh fruit was very expensive to keep on board, whereas boiling it down to juice allowed easy storage but destroyed the vitamin (especially if boiled in copper kettles).[57] Ship captains concluded wrongly that Lind's other suggestions were ineffective because those juices failed to prevent or cure scurvy.
It was 1795 before the British navy adopted lemons or lime as standard issue at sea. Limes were more popular, as they could be found in British West Indian Colonies, unlike lemons, which were not found in British Dominions, and were therefore more expensive. This practice led to the American use of the nickname "limey" to refer to the British. Captain James Cook had previously demonstrated and proven the principle of the advantages of carrying "Sour krout" on board, by taking his crews to the Hawaiian Islands and beyond without losing any of his men to scurvy.[58] For this otherwise unheard of feat, the British Admiralty awarded him a medal.
The name "antiscorbutic" was used in the eighteenth and nineteenth centuries as general term for those foods known to prevent scurvy, even though there was no understanding of the reason for this. These foods included but were not limited to: lemons, limes, and oranges; sauerkraut, cabbage, malt, and portable soup.[59]
Even before the antiscorbutic substance was identified, there were indications that it was present in amounts sufficient to prevent scurvy, in nearly all fresh (uncooked and uncured) foods, including raw animal-derived foods. In 1928 the Arctic anthropologist Vilhjalmur Stefansson attempted to prove his theory of how the Eskimos are able to avoid scurvy with almost no plant food in their diet, despite the disease striking European Arctic explorers living on similar high-meat cooked diets. Stefansson theorised that the natives get their vitamin C from fresh meat that is minimally cooked. Starting in February 1928, for one year he and a colleague lived on an exclusively minimally-cooked meat diet while under medical supervision; they remained healthy. Later studies done after vitamin C could be quantified in mostly-raw traditional food diets of the Yukon, Inuit, and Métís of the Northern Canada, showed that their daily intake of vitamin C averaged between 52 and 62 mg/day, an amount approximately the dietary reference intake (DRI), even at times of the year when little plant-based food were eaten.[60]
Discovery
In 1907, the needed biological-assay model to isolate and identify the antiscorbutic factor was discovered. Axel Holst and Theodor Frølich, two Norwegian physicians studying shipboard beriberi contracted aboard ship's crews in the Norwegian Fishing Fleet, wanted a small test mammal to substitute for the pigeons then used in beriberi research. They fed guinea pigs their test diet of grains and flour, which had earlier produced beriberi in their pigeons, and were surprised when classic scurvy resulted instead. This was a serendipitous choice of model. Until that time, scurvy had not been observed in any organism apart from humans, and had been considered an exclusively human disease. (Pigeons, as seed-eating birds, were also later found to make their own vitamin C.) Holst and Frølich found they could cure the disease in guinea pigs with the addition of various fresh foods and extracts. This discovery of a clean animal experimental model for scurvy, made even before the essential idea of "vitamins" in foods had even been put forward, has been called the single most important piece of vitamin C research.[61]
In 1912, the Polish-American biochemist Casimir Funk, while researching beriberi in pigeons, developed the concept of vitamins to refer to the non-mineral micro-nutrients that are essential to health. The name is a blend of "vital", due to the vital role they play biochemically, and "amines" because Funk thought that all these materials were chemical amines. Although the "e" was dropped after skepticism that all these compounds were amines, the word vitamin remained as a generic name for them. One of the "vitamins" was thought to be the anti-scorbutic factor in foods discovered by Holst and Frølich. In 1928 this vitamin was referred to as "water-soluble C," although its chemical structure had still not been determined. [62]
From 1928 to 1933, the Hungarian research team of Joseph L. Svirbely and Albert Szent-Györgyi and the American worker Charles Glen King, first identified the anti-scorbutic factor, calling it "ascorbic acid" for its vitamin activity. Szent-Györgyi had isolated the chemical hexuronic acid from animal adrenal glands at the Mayo clinic, and suspected it to be the antiscorbutic factor, but could not prove it without a biological assay. At the same time, for five years King's laboratory at the University of Pittsburgh had been trying to isolate the antiscorbutic factor in lemon juice, using the model of scorbutic guinea pigs, which developed scurvy when not fed fresh foods, but were cured by lemon juice. They had also considered hexuronic acid, but had been put off the trail when a coworker made the explicit (and mistaken) experimental claim that this substance was not the antiscorbutic substance.
Finally, in late 1931, Szent-Györgyi gave Svirbely, a former worker in King's lab who had recently joined Szent-Györgyi's lab, the last of this hexuronic acid, with the suggestion that it might be the anti-scorbutic factor. By the spring of 1932, King's laboratory had proven this, but published the result without giving Szent-Györgyi credit for it, leading to a bitter dispute over priority claims (in reality it had taken a teamwork effort by both groups, since Szent-Györgyi was unwilling to do the difficult and messy animal studies). By 1932, Szent-Györgyi's group had discovered that paprika peppers, a common spice in the Hungarian diet, was a rich source of hexuronic acid, the antiscorbutic factor, by then named ascorbic acid, in honor of its activity against scurvy.[63] Ascorbic acid turned out not to be an amine, nor even to contain any nitrogen.
For his accomplishment, Szent-Györgyi was alone awarded the 1937 Nobel Prize in Medicine "for his discoveries in connection with the biological combustion processes, with special reference to vitamin C and the catalysis of fumaric acid".[64]
Between 1933 and 1934, the British chemists Sir Walter Norman Haworth and Sir Edmund Hirst and, independently, the Polish chemist Tadeus Reichstein, succeeded in synthesizing the vitamin, making it the first to be artificially produced. This made possible the cheap mass-production of what was by then known as vitamin C. Only Haworth was awarded the 1937 Nobel Prize in Chemistry for this work, but the Reichstein process, a combined chemical and bacterial fermentation sequence still used today to produce vitamin C, retained Reichstein's name.[65][66] In 1934 Hoffmann–La Roche, which bought the Reichstein process patent, became the first pharmaceutical company to mass-produce and market synthetic vitamin C, under the brand name of Redoxon.[67]
In 1957 the American J.J. Burns showed that the reason some mammals were susceptible to scurvy was the inability of their liver to produce the active enzyme L-gulonolactone oxidase, which is the last of the chain of four enzymes that synthesize vitamin C.[68][69] American biochemist Irwin Stone was the first to exploit vitamin C for its food preservative properties. He later developed the theory that humans possess a mutated form of the L-gulonolactone oxidase coding gene.[70]
In 2008 researchers at the University of Montpellier discovered that in humans and other primates the red blood cells have evolved a mechanism to more efficiently utilize the vitamin C present in the body by recycling oxidized L-dehydroascorbic acid (DHA) back into ascorbic acid, which can be reused by the body. The mechanism was not found to be present in mammals that synthesize their own vitamin C.[71]
Physiological function
In humans, vitamin C is essential to a healthy diet as well as being a highly effective antioxidant, acting to lessen oxidative stress; a substrate for ascorbate peroxidase;[3] and an enzyme cofactor for the biosynthesis of many important biochemicals. Vitamin C acts as an electron donor for important enzymes:[72]
Collagen, carnitine, and tyrosine synthesis, and microsomal metabolism
Ascorbic acid performs numerous physiological functions in the human body. These functions include the synthesis of collagen, carnitine and neurotransmitters, the synthesis and catabolism of tyrosine and the metabolism of microsome.[73] Ascorbate acts as a reducing agent (i.e. electron donor, anti-oxidant) in the above-described syntheses, maintaining iron and copper atoms in their reduced states.
Vitamin C acts as an electron donor for eight different enzymes:[72]
- Three enzymes participate in collagen hydroxylation.[74][75][76] These reactions add hydroxyl groups to the amino acids proline or lysine in the collagen molecule via prolyl hydroxylase and lysyl hydroxylase, both requiring vitamin C as a cofactor. Hydroxylation allows the collagen molecule to assume its triple helix structure and making vitamin C essential to the development and maintenance of scar tissue, blood vessels, and cartilage.[42]
- Two enzymes are necessary for synthesis of carnitine.[77][78] Carnitine is essential for the transport of fatty acids into mitochondria for ATP generation.
- The remaining three enzymes have the following functions in common, but have other functions as well:
- dopamine beta hydroxylase participates in the biosynthesis of norepinephrine from dopamine.[79][80]
- another enzyme adds amide groups to peptide hormones, greatly increasing their stability.[81][82]
- one modulates tyrosine metabolism.[83][84]
Antioxidant
Ascorbic acid is well known for its antioxidant activity. Ascorbate acts as a reducing agent to reverse oxidation in aqueous solution. When there are more free radicals (reactive oxygen species) in the human body than antioxidants, the condition is called oxidative stress.[85] Oxidative stress induced diseases encompass cardiovascular diseases, hypertension, chronic inflammatory diseases and diabetes.[86][87][88][89] The plasma ascorbate concentration in a patient with oxidative stress (measured as less than 45 µmol/L) is lower than that of a healthy individual (61.4-80 µmol/L).[90] According to McGregor and Biesalski (2006),[85] increasing the individual's plasma ascorbate level may have therapeutic effects in cases of oxidative stress. Individuals with oxidative stress and healthy individuals have different pharmacokinetics of ascorbate.
Although initial studies suggested that some antioxidant supplements might promote health, later large clinical trials did not detect any benefit on overall mortality rates with vitamin C supplementation.[91]
Pro-oxidant
Ascorbic acid behaves not only as an antioxidant but also as a pro-oxidant.[85] Ascorbic acid has been shown to reduce transition metals, such as cupric ions (Cu2+), to cuprous (Cu1+), and ferric ions (Fe3+) to ferrous (Fe2+) during conversion from ascorbate to dehydroxyascorbate in vitro.[92] This reaction can generate superoxide and other ROS. However, in the body, free transition elements are unlikely to be present while iron and copper are bound to diverse proteins.[85] Recent studies show that intravenous injection of 7.5g of ascorbate daily for six days did not increase pro-oxidant markers;[93] thus, ascorbate as a pro-oxidant is unlikely to convert metals to create ROS in vivo.
Immune system
Some advertisements claim that Vitamin C "supports" or is "important" for immune system function. These claims are partially supported by the scientific evidence.[94]
Daily requirements
The North American Dietary Reference Intake recommends 90 milligrams per day and no more than 2 grams (2,000 milligrams) per day.[95] Other related species sharing the same inability to produce vitamin C and requiring exogenous vitamin C consume 20 to 80 times this reference intake.[96][97] There is continuing debate within the scientific community over the best dose schedule (the amount and frequency of intake) of vitamin C for maintaining optimal health in humans.[98] It is generally agreed that a balanced diet without supplementation contains enough vitamin C to prevent scurvy in an average healthy adult, while those who are pregnant, smoke tobacco, or are under stress require slightly more.[95]
High doses (thousands of milligrams) may result in diarrhea in healthy adults. Proponents of alternative medicine (specifically orthomolecular medicine)[99] claim the onset of diarrhea to be an indication of where the body’s true vitamin C requirement lies, because this is the point where the body uses vitamin's water solubility to simply flush out the unusable portion, as the diarrhea length/intensity is directly correlated to the quantity of the overdose, though this has yet to be clinically verified.
United States vitamin C recommendations[95] | |
---|---|
Recommended Dietary Allowance (adult male) | 90 mg per day |
Recommended Dietary Allowance (adult female) | 75 mg per day |
Tolerable Upper Intake Level (adult male) | 2,000 mg per day |
Tolerable Upper Intake Level (adult female) | 2,000 mg per day |
Government recommended intakes
Recommendations for vitamin C intake have been set by various national agencies:
- 75 milligrams per day: the United Kingdom's Food Standards Agency[1]
- 45 milligrams per day: the World Health Organization[100]
- 90 mg/day (males) and 75 mg/day (females): Health Canada 2007[101]
- 60–95 milligrams per day: United States' National Academy of Sciences.[95]
The United States defined Tolerable Upper Intake Level for a 25-year-old male is 2,000 milligrams per day.
Alternative recommendations on intakes
Some independent researchers have calculated the amount needed for an adult human to achieve similar blood serum levels as vitamin C synthesising mammals as follows:
- 400 milligrams per day: the Linus Pauling Institute.[102]
- 500 milligrams per 12 hours: Professor Roc Ordman, from research into biological free radicals.[103]
- 3,000 milligrams per day (or up to 30,000 mg during illness): the Vitamin C Foundation.[104]
- 6,000–12,000 milligrams per day: Thomas E. Levy, Colorado Integrative Medical Centre.[105]
- 6,000–18,000 milligrams per day: Linus Pauling's personal use.[106]
Therapeutic uses
Vitamin C is necessary for the treatment and prevention of scurvy. Scurvy is commonly comorbid with other diseases of malnutrition; sufficient vitamin C to prevent scurvy occurs in most diets in industrialized nations.[107][108][109]
Vitamin C functions as an antioxidant. Adequate intake is necessary for health, but supplementation is probably not necessary in most cases.[110][111][112][113]
Based on animal and epidemiological models, high doses of vitamin C may have "protective effects" on lead-induced nerve and muscle abnormalities,[114] especially in smokers.[115][116]
Dehydroascorbic acid, the main form of oxidized vitamin C in the body, may reduce neurological deficits and mortality following stroke due to its ability to cross the blood-brain barrier, while "the antioxidant ascorbic acid (AA) or vitamin C does not penetrate the blood-brain barrier".[117]
Vitamin C's effect on the common cold has been extensively researched and shown to have no effect.[118]
Vitamin C megadosage
Several individuals and organizations advocate large doses of vitamin C based on in vitro and retrospective studies,[119] although large, randomized clinical trials on the effects of high doses on the general population have never taken place. Individuals who have recommended intake well in excess of the current Dietary Reference Intake (DRI) include Robert Cathcart, Ewan Cameron, Steve Hickey, Irwin Stone, Matthias Rath and Linus Pauling. Arguments for megadosage are based on the diets of closely related apes and the likely diet of pre-historical humans, and that most mammals synthesize vitamin C rather than relying on dietary intake.
Stone[120] and Pauling[97] calculated, based on the diet of primates[96] (similar to what our common ancestors are likely to have consumed when the gene mutated), that the optimum daily requirement of vitamin C is around 2,300 milligrams for a human requiring 2,500 kcal a day. Pauling also criticized the established RDA as sufficient to prevent scurvy, but not necessarily the dosage for optimal health.[106]
Higher vitamin C intake reduces serum uric acid levels, and is associated with lower incidence of gout.[121]
Vitamin C has also been promoted as efficacious against a vast array of diseases and syndromes. Research has been done on the effects of Vitamin C on a variety of disorders and diseases including the following:[122] pneumonia,[123] heart disease,[122][124] AIDS,[125][126] autism,[127] low sperm count,[128] age-related macular degeneration,[129][130] altitude sickness,[131] pre-eclampsia,[132] amyotrophic lateral sclerosis,[133] heroin addiction,[134] asthma,[135] tetanus,[136] and cancer.[137][138][139][140] These uses are poorly supported by the evidence, and sometimes contraindicated.[141][142][143][144][145]
Testing for ascorbate levels in the body
Simple tests use dichlorphenolindophenol, a redox indicator, to measure the levels of vitamin C in the urine and in serum or blood plasma. However these reflect recent dietary intake rather than the level of vitamin C in body stores.[6] Reverse phase high performance liquid chromatography is used for determining the storage levels of vitamin C within lymphocytes and tissue. It has been observed that while serum or blood plasma levels follow the circadian rhythm or short term dietary changes, those within tissues themselves are more stable and give a better view of the availability of ascorbate within the organism. However, very few hospital laboratories are adequately equipped and trained to carry out such detailed analyses, and require samples to be analyzed in specialized laboratories.[146][147]
Adverse effects
Common side-effects
Relatively large doses of vitamin C may cause indigestion, particularly when taken on an empty stomach. When taken in large doses, vitamin C causes diarrhea in healthy subjects. In one trial in 1936, doses up to 6 grams of ascorbic acid were given to 29 infants, 93 children of preschool and school age, and 20 adults for more than 1400 days. With the higher doses, toxic manifestations were observed in five adults and four infants. The signs and symptoms in adults were nausea, vomitting, diarrhea, flushing of the face, headache, fatigue and disturbed sleep. The main toxic reactions in the infants were skin rashes.[148]
Possible side-effects
As vitamin C enhances iron absorption,[149] iron poisoning can become an issue to people with rare iron overload disorders, such as haemochromatosis. A genetic condition that results in inadequate levels of the enzyme glucose-6-phosphate dehydrogenase (G6PD) can cause sufferers to develop hemolytic anemia after ingesting specific oxidizing substances, such as very large dosages of vitamin C.[150]
There is a longstanding belief among the mainstream medical community that vitamin C causes kidney stones, which is based on little science.[151] Although recent studies have found a relationship,[152] a clear link between excess ascorbic acid intake and kidney stone formation has not been generally established.[153] Some case reports exist for a link between patients with oxalate deposits and a history of high dose vitamin C usage.[154]
In a study conducted on rats, during the first month of pregnancy, high doses of vitamin C may suppress the production of progesterone from the corpus luteum.[155] Progesterone, necessary for the maintenance of a pregnancy, is produced by the corpus luteum for the first few weeks, until the placenta is developed enough to produce its own source. By blocking this function of the corpus luteum, high doses of vitamin C (1000+ mg) are theorized to induce an early miscarriage. In a group of spontaneously aborting women at the end of the first trimester, the mean values of vitamin C were significantly higher in the aborting group. However, the authors do state: 'This could not be interpreted as an evidence of causal association.'[156] However, in a previous study of 79 women with threatened, previous spontaneous, or habitual abortion, Javert and Stander (1943) had 91% success with 33 patients who received vitamin C together with bioflavonoids and vitamin K (only three abortions), whereas all of the 46 patients who did not receive the vitamins aborted.[157]
Recent rat and human studies suggest that adding Vitamin C supplements to an exercise training program can cause a decrease in mitochondria production, hampering endurance capacity.[158] A cancer-causing mechanism of hexavalent chromium may be triggered by vitamin C.[159]
Chance of overdose
Vitamin C exhibits remarkably low toxicity. The LD50 (the dose that will kill 50% of a population) in rats is generally accepted to be 11.9 grams per kilogram of body weight when taken orally.[57] The LD50 in humans remains unknown, owing to medical ethics that preclude experiments that would put patients at risk of harm. However, as with all substances tested in this way, the LD50 is taken as a guide to its toxicity in humans and no data to contradict this has been found. Josh, you won't be able to overdose from taking too many Emergen-C packets.
Natural and synthetic dietary sources
The richest natural sources are fruits and vegetables, and of those, the Kakadu plum and the camu camu fruit contain the highest concentration of the vitamin. It is also present in some cuts of meat, especially liver. Vitamin C is the most widely taken nutritional supplement and is available in a variety of forms, including tablets, drink mixes, crystals in capsules or naked crystals.
Vitamin C is absorbed by the intestines using a sodium-ion dependent channel. It is transported through the intestine via both glucose-sensitive and glucose-insensitive mechanisms. The presence of large quantities of sugar either in the intestines or in the blood can slow absorption.[160]
Plant sources
While plants are generally a good source of vitamin C, the amount in foods of plant origin depends on: the precise variety of the plant, the soil condition, the climate in which it grew, the length of time since it was picked, the storage conditions, and the method of preparation.[161]
The following table is approximate and shows the relative abundance in different raw plant sources.[162][163][164] As some plants were analyzed fresh while others were dried (thus, artifactually increasing concentration of individual constituents like vitamin C), the data are subject to potential variation and difficulties for comparison. The amount is given in milligrams per 100 grams of fruit or vegetable and is a rounded average from multiple authoritative sources:
Plant source | Amount (mg / 100g) |
---|---|
Kakadu plum | 3100 |
Camu Camu | 2800 |
Rose hip | 2000 |
Acerola | 1600 |
Seabuckthorn | 695 |
Jujube | 500 |
Indian gooseberry | 445 |
Baobab | 400 |
Blackcurrant | 200 |
Red pepper | 190 |
Parsley | 130 |
Guava | 100 |
Kiwifruit | 90 |
Broccoli | 90 |
Loganberry | 80 |
Redcurrant | 80 |
Brussels sprouts | 80 |
Wolfberry (Goji) | 73 † |
Lychee | 70 |
Cloudberry | 60 |
Elderberry | 60 |
Persimmon | 60 |
† average of 3 sources; dried
Plant source | Amount (mg / 100g) |
---|---|
Papaya | 60 |
Strawberry | 60 |
Orange | 50 |
Kale | 41 |
Lemon | 40 |
Melon, cantaloupe | 40 |
Cauliflower | 40 |
Garlic | 31 |
Grapefruit | 30 |
Raspberry | 30 |
Tangerine | 30 |
Mandarin orange | 30 |
Passion fruit | 30 |
Spinach | 30 |
Cabbage raw green | 30 |
Lime | 30 |
Mango | 28 |
Blackberry | 21 |
Potato | 20 |
Melon, honeydew | 20 |
Cranberry | 13 |
Tomato | 10 |
Blueberry | 10 |
Pineapple | 10 |
Pawpaw | 10 |
Plant source | Amount (mg / 100g) |
---|---|
Grape | 10 |
Apricot | 10 |
Plum | 10 |
Watermelon | 10 |
Banana | 9 |
Carrot | 9 |
Avocado | 8 |
Crabapple | 8 |
Persimmon - fresh | 7 |
Cherry | 7 |
Peach | 7 |
Apple | 6 |
Asparagus | 6 |
Beetroot | 5 |
Chokecherry | 5 |
Pear | 4 |
Lettuce | 4 |
Cucumber | 3 |
Eggplant | 2 |
Raisin | 2 |
fig | 2 |
Bilberry | 1 |
Horned melon | 0.5 |
Medlar | 0.3 |
Animal sources
The overwhelming majority of species of animals and plants synthesise their own vitamin C, making some, but not all, animal products, sources of dietary vitamin C.
Vitamin C is most present in the liver and least present in the muscle. Since muscle provides the majority of meat consumed in the western human diet, animal products are not a reliable source of the vitamin. Vitamin C is present in mother's milk and, in lower amounts, in raw cow's milk, with pasteurized milk containing only trace amounts.[167] All excess vitamin C is disposed of through the urinary system.
The following table shows the relative abundance of vitamin C in various foods of animal origin, given in milligram of vitamin C per 100 grams of food:
Animal Source | Amount (mg / 100g) |
---|---|
Calf liver (raw) | 36 |
Beef liver (raw) | 31 |
Oysters (raw) | 30 |
Cod roe (fried) | 26 |
Pork liver (raw) | 23 |
Lamb brain (boiled) | 17 |
Chicken liver (fried) | 13 |
Animal Source | Amount (mg / 100g) |
---|---|
Lamb liver (fried) | 12 |
Calf adrenals (raw) | 11[168] |
Lamb heart (roast) | 11 |
Lamb tongue (stewed) | 6 |
Human milk (fresh) | 4 |
Goat milk (fresh) | 2 |
Camel milk (fresh) | 5[169] |
Cow milk (fresh) | 2 |
Food preparation
Vitamin C chemically decomposes under certain conditions, many of which may occur during the cooking of food. Vitamin C concentrations in various food substances decrease with time in proportion to the temperature they are stored at[170] and cooking can reduce the Vitamin C content of vegetables by around 60% possibly partly due to increased enzymatic destruction as it may be more significant at sub-boiling temperatures.[171] Longer cooking times also add to this effect, as will copper food vessels, which catalyse the decomposition.[57]
Another cause of vitamin C being lost from food is leaching, where the water-soluble vitamin dissolves into the cooking water, which is later poured away and not consumed. However, vitamin C doesn't leach in all vegetables at the same rate; research shows broccoli seems to retain more than any other.[172] Research has also shown that fresh-cut fruits don't lose significant nutrients when stored in the refrigerator for a few days.[173]
Vitamin C supplements
Vitamin C is the most widely taken dietary supplement.[174] It is available in many forms including caplets, tablets, capsules, drink mix packets, in multi-vitamin formulations, in multiple antioxidant formulations, and crystalline powder. Timed release versions are available, as are formulations containing bioflavonoids such as quercetin, hesperidin and rutin. Tablet and capsule sizes range from 25 mg to 1500 mg. Vitamin C (as ascorbic acid) crystals are typically available in bottles containing 300 g to 1 kg of powder (a teaspoon of vitamin C crystals equals 5,000 mg).
Industrial synthesis
Vitamin C is produced from glucose by two main routes. The Reichstein process, developed in the 1930s, uses a single pre-fermentation followed by a purely chemical route. The modern two-step fermentation process, originally developed in China in the 1960s, uses additional fermentation to replace part of the later chemical stages. Both processes yield approximately 60% vitamin C from the glucose feed.[175]
Research is underway at the Scottish Crop Research Institute in the interest of creating a strain of yeast that can synthesise vitamin C in a single fermentation step from galactose, a technology expected to reduce manufacturing costs considerably.[18]
World production of synthesised vitamin C is currently estimated at approximately 110,000 tonnes annually. Main producers have been BASF/Takeda, DSM, Merck and the China Pharmaceutical Group Ltd. of the People's Republic of China. China is slowly becoming the major world supplier as its prices undercut those of the US and European manufacturers.[176] By 2008 only the DSM plant in Scotland remained operational outside the strong price competition from China.[177] The world price of vitamin C rose sharply in 2008 partly as a result of rises in basic food prices but also in anticipation of a stoppage of the two Chinese plants, situated at Shijiazhuang near Beijing, as part of a general shutdown of polluting industry in China over the period of the Olympic games.[178]
Food Fortification
Health Canada evaluated the effect of fortification of foods with abscorbate in the guidance document, Addition of Vitamins and Minerals to Food, 2005.[179] Health Canada categorized abscorbate as a ‘Risk Category A nutrients’. This means it is either a nutrient for which an upper limit for intake is set but allows a wide margin of intake that has a narrow margin of safety but non-serious critical adverse effects. Health Canada recommended a minimum of 3 mg or 5% of RDI in order for the food to claim to be a source of Vitamin C and maximum fortification of 12 mg (20% of RDI) in order to be claimed "Excellent Source".[179]
Compendial status
References
- ^ a b "Vitamin C". Food Standards Agency (UK). Retrieved 2007-02-19.
- ^ "Vitamin C". University of Maryland Medical Center. 2007. Retrieved 2008-03-31.
{{cite web}}
: Unknown parameter|month=
ignored (help) - ^ a b Higdon, Jane, Ph.D. (2006-01-31). "Vitamin C". Oregon State University, Micronutrient Information Center. Retrieved 2007-03-07.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ McCluskey, Elwood S. (1985). "Which Vertebrates Make Vitamin C?" (PDF). Origins. 12 (2): 96–100.
- ^ Padayatty S, Katz A, Wang Y, Eck P, Kwon O, Lee J, Chen S, Corpe C, Dutta A, Dutta S, Levine M (2003). "Vitamin C as an Antioxidant: evaluation of its role in disease prevention" (PDF). J Am Coll Nutr. 22 (1): 18–35. PMID 12569111.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ a b c d "Vitamin C – Risk Assessment" (PDF). UK Food Standards Agency. Retrieved 2007-02-19.
- ^ , Wilson LG. The Clinical Definition of Scurvy and the Discovery of Vitamin C J Hist of Med1975;40-60.
- ^ Bjelakovic G; et al. (2007). "Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis". JAMA. 297 (8): 842–57. doi:10.1001/jama.297.8.842. PMID 17327526.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ Meister A (1994). "Glutathione-ascorbic acid antioxidant system in animals" (PDF). J Biol Chem. 269 (13): 9397–400. PMID 8144521.
- ^ , Nualart FJ, Rivas CI, Montecinos VP, et al. Recycling of vitamin C by a bystander effect. J Biol Chem 2003; 278:10128–10133.
- ^ Gropper SS, Smith JL, Grodd JL. 2004. Advanced Nutrition and Human Metabolism. Fourth Edition. Thomson Wadsworth, Belmont, CA. USA. pp. 260-275.
- ^ Bánhegyi G, Mándl J (2001). "The hepatic glycogenoreticular system". Pathol Oncol Res. 7 (2): 107–10. doi:10.1007/BF03032575. PMID 11458272.
- ^ Harris, J. Robin (1996). Ascorbic Acid: Subcellular Biochemistry. Springer. p. 35. ISBN 0306451484. OCLC 34307319 46753025.
{{cite book}}
: Check|oclc=
value (help) - ^ "How Humans Make Up For An 'Inborn' Vitamin C Deficiency".
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Milton K (1999). "Nutritional characteristics of wild primate foods: do the diets of our closest living relatives have lessons for us?". Nutrition. 15 (6): 488–98. doi:10.1016/S0899-9007(99)00078-7. PMID 10378206.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Stone, Irwin (July 16, 1978). "Eight Decades of Scurvy. The Case History of a Misleading Dietary Hypothesis". Retrieved 2007-04-06.
Biochemical research in the 1950s showed that the lesion in scurvy is the absence of the enzyme, L-Gulonolactone oxidase (GLO) in the human liver (Burns, 1959). This enzyme is the last enzyme in a series of four that convert blood sugar, glucose, into ascorbate in the mammalian liver. This liver metabolite, ascorbate, is produced in an unstressed goat, for instance, at the rate of about 13,000 mg per day per 150 pounds body weight (Chatterjee, 1973). A mammalian feedback mechanism increases this daily ascorbate production many fold under stress (Subramanian et al., 1973)
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ C. Long; et al. (2003). "Ascorbic acid dynamics in the seriously ill and injured". Journal of Surgical Research. 109 (2): 144–148. doi:10.1016/S0022-4804(02)00083-5. PMID 12643856.
{{cite journal}}
: Explicit use of et al. in:|author=
(help) - ^ a b R.D. Hancock & R. Viola. "Ascorbic acid biosynthesis in higher plants and micro-organisms" (PDF). Scottish Crop Research Institute. Retrieved 2007-02-20.
- ^ Hancock RD, Galpin JR, Viola R. (2000). "Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae" (PDF). FEMS Microbiol Lett. 186 (2): 245–50. doi:10.1111/j.1574-6968.2000.tb09112.x. PMID 10802179. Retrieved 2007-02-19.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Venturi S, Venturi M. Evolution of Dietary Antioxidant Defences. European EPI-Marker. 2007, 11, 3 :1-7. http://web.tiscali.it/iodio/
- ^ Venturi S, Donati FM, Venturi A, Venturi M. 2000. Environmental iodine deficiency: A challenge to the evolution of terrestrial life? Thyroid. 10 (8):727-9.
- ^ Purves WK, Sadava D, Orians GH, Heller HC. 1998. Life.The Science of Biology. Part 4: The Evolution of Diversity. Chapter 30
- ^ Venturi S, Venturi M. 1999. Iodide, thyroid and stomach carcinogenesis: Evolutionary story of a primitive antioxidant? Eur J Endocrinol . 140:371-372.
- ^ Hardie LJ, Fletcher TC, Secombes C.J.1991. The effect of dietary vitamin C on the immune response of the Atlantic salmon (Salmo salar). Aquaculture 95:201–214
- ^ Challem, JJ, Taylor, EW. 1998. Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radical Biology and Medicine. 25(1):130-132.
- ^ Benhegyi, G. 1997. Ascorbate metabolism and its regulation in animals. Free Radical Biology and Medicine. 23(5):793-803.
- ^ Stone I. 1979. Homo sapiens ascorbicus, a biochemically corrected robust human mutant. Medical Hypotheses. 5(6):711-721
- ^ Vitamin C biosynthesis in prosimians: Evidence for the anthropoid affinity of Tarsius. J. I. Pollock 1, R. J. Mullin. American Journal of Physical Anthropology. 1986. Volume 73 Issue 1, Pages 65 - 70. Published Online: 3 May 2005: Digital Object Identifier (DOI) 10.1002/ajpa.1330730106, see [1] Accessed March 15, 2010
- ^ Poux, C. and Douzery, E.J.P., 2004. Primate phylogeny, evolutionary rate variations,and divergence times: a contribution from the nuclear gene IRBP. American Journal of Physical Anthropology, 124: 1-16.
- ^ Goodman, M., Porter, C.A., Czelusniak, J., Page, S.L., Schneider, H., Shoshani, J., Gunnell, G. and Groves, C.P., 1998. Toward a phylogenetic classification of primates based on DNA evidence complemented by fossil evidence. Molecular Phylogenetics and Evolution, 9: 585-598
- ^ Porter, C.A., Page, S.L., Czelusniak, J., Schneider, H., Schneider, M.P.C., Sampaio, I. and Goodman, M., 1997. Phylogeny and evolution of selected primates as determined by sequences of the ?-globin locus and 5’flanking regions. International Journal of Primatology, 18: 261-295. Refs Poux, Porter and Goodman preceeding, as quoted in [2]
- ^ Proctor P (1970). "Similar functions of uric acid and ascorbate in man?". Nature. 228 (5274): 868. doi:10.1038/228868a0. PMID 5477017.
- ^ a b Savini, I., Rossi, A., Pierro, C., et al. SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 2008; 34: 347–355
- ^ Rumsey SC, Kwon O, Xu GW, et al. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 1997; 272:18982–18989.
- ^ May, J. M., Qu, Z. C., Neel, D. R., and Li, X. Recycling of vitamin C from its oxidized forms by human endothelial cells. Biochim Biophys Acta 2003; 1640(2-3):153-161
- ^ Packer, L. (1997) Vitamin C and redox cycling antioxidants. In: Packer L, F. J. (ed). Vitamin C in health and disease, Marcel Dekker Inc, New York
- ^ James M. May, Zhi-chao Qua, Huan Qiaoa and Mark J. Kourya. Maturational Loss of the Vitamin C Transporter in Erythrocytes. Biochem Biophys Res Commun. 2007; 360:295-298.
- ^ Sotiriou, S., Gispert, S., Cheng, J., Wang, Y., Chen, A., Hoogstraten-Miller, S., Miller, G. F., Kwon, O., Levine, M., Guttentag, S. H., and Nussbaum, R. L. (2002) Nat Med, 8:514-517
- ^ Levine M, et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc Natl Acad Sci USA. 1996; 93:3704–3709.
- ^ Renal excretion of ascorbic acid: effect of age and sex. D. G. Oreopoulos, R. D. Lindeman, D. J. VanderJagt, A. H. Tzamaloukas, H. N. Bhagavan and P. J. Garry. Journal of the American College of Nutrition, Vol 12, Issue 5 537-542.
- ^ Hediger MA (2002). "New view at C". Nat. Med. 8 (5): 445–6. doi:10.1038/nm0502-445. PMID 11984580.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ a b MedlinePlus Encyclopedia: Ascorbic acid
- ^ "The influence of smoking on Vitamin C status in adults". BBC news and Cambridge University. 2000-09-31. Retrieved 2007-12-12.
{{cite news}}
: Check date values in:|date=
(help) - ^ Rath, M; Pauling, L. (1990). "Immunological evidence for the accumulation of lipoprotein(a) in the atherosclerotic lesion of the hypoascorbemic guinea pig" (PDF). Proceedings of the National Academy of Sciences. 87 (23): 9388–9390. doi:10.1073/pnas.87.23.9388.
- ^ Statistics Canada, Canadian Community Health Survey, Cycle 2.2, Nutrition (2004)
- ^ J Pemberton. Medical experiments carried out in Sheffield on conscientious objectors to military service during the 1939–45 war. International Journal of Epidemiology 2006 35(3):556-558; doi:10.1093/ije/dyl020 full text.
- ^ Hodges, R. E.; Baker, E. M.; Hood, J.; Sauberlich, H. E.; March, S. C. (1969). "Experimental Scurvy in Man". American Journal of Clinical Nutrition. 22 (5): 535–548. PMID 4977512.
- ^ Khaw, KT (March 2001). "Relation between plasma ascorbic acid and mortality in men and women in EPIC-Norfolk prospective study: a prospective population study. European Prospective Investigation into Cancer and Nutrition". Lancet. 357 (9257): 657–63. doi:10.1016/S0140-6736(00)04128-3. PMID 11247548.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Hemil, Harri (15 October 2007). "The Role of Vitamin C in the Treatment of the Common Cold". Americal Family Physician.
- ^ Barbosa, E (2009). "Supplementation of vitamin E, vitamin C, and zinc attenuates oxidative stress in burned children: a randomized, double-blind, placebo-controlled pilot study". J Burn Care Res. 30 (5): 859–66. doi:10.1097/BCR.0b013e3181b487a8. PMID 19692922.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ ter Riet, Gerben (December 1995). "Randomized clinical trial of ascorbic acid in the treatment of pressure ulcers". Journal of Clinical Epidemiology. 48 (12): 1453–60. doi:10.1016/0895-4356(95)00053-4. PMID 8543959.
{{cite journal}}
:|access-date=
requires|url=
(help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ "Jacques Cartier's Second Voyage - 1535 - Winter & Scurvy". Retrieved 2007-02-25.
- ^ Martini E. (2002). "Jacques Cartier witnesses a treatment for scurvy". Vesalius. 8 (1): 2–6. PMID 12422875.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Armstrong, Alexander (1858). "Observation on Navel Hygiene and Scarvy, more particularly as the later appeared during the Polar Voyaje". British and foreign medico-chirurgical review: or, Quarterly journal of practial medicine and surgery. 22: 295–305.
- ^ Lind, James (1753). A Treatise of the Scurvy. London: A. Millar.
- ^ Singh, Simon (2008). Trick of Treatment: The Undeniable Facts about Alternative Medicine. WW Norton & Company. pp. 15–18. ISBN 9780393066616.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ a b c "Safety (MSDS) data for ascorbic acid". Oxford University. 2005-10-09. Retrieved 2007-02-21.
- ^ Cook, James (1999). The Journals of Captain Cook. Penguin Books. p. 38. ISBN 0140436472. OCLC 42445907.
{{cite book}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help) - ^ Stevens, David; Reeve, John (2006). Navy and the nation: the influence of the navy on modern Australia. Allen & Unwin. p. 74. ISBN 9781741142006.
{{cite book}}
: Cite has empty unknown parameter:|unused_data=
(help); Text "chapter Cook'sVpyages 1768–1780" ignored (help) - ^ Kuhnlein HV, Receveur O, Soueida R, Egeland GM (1 June 2004). "Arctic indigenous peoples experience the nutrition transition with changing dietary patterns and obesity". J Nutr. 134 (6): 1447–53. PMID 15173410.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ PMID 12555613 Tidsskr Nor Laegeforen. 2002 Jun 30;122(17):1686-7. [Axel Holst and Theodor Frolich--pioneers in the combat of scurvy][Article in Norwegian] Norum KR, Grav HJ.
- ^ PMID 9105273 L Rosenfeld. Vitamine--vitamin. The early years of discovery. Clin Chem. 1997 Apr;43(4):680-5.
- ^ Story of Vitamin C's chemical discovery. Accessed Jan 21, 2010
- ^ "Pitt History - 1932: Charles Glen King". University of Pittsburgh. Retrieved 2007-02-21.
In recognition of this medical breakthrough, some scientists believe that King also deserved Nobel Prize recognition.
- ^ Boudrant, J. (1990): Microbial processes for ascorbic acid biosynthesis: a review. In: Enzyme Microb Technol. 12(5); 322–9; PMID 1366548; doi:10.1016/0141-0229(90)90159-N
- ^ Bremus, C. et al. (2006): The use of microorganisms in L-ascorbic acid production. In: J Biotechnol. 124(1); 196–205; PMID 16516325; doi:10.1016/j.jbiotec.2006.01.010
- ^ Bächi, Beat (2008). "Natürliches oder künstliches Vitamin C?". NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin. 16 (4): 445–470. doi:10.1007/s00048-008-0309-y.
- ^ BURNS JJ, EVANS C (1 December 1956). "The synthesis of L-ascorbic acid in the rat from D-glucuronolactone and L-gulonolactone". J Biol Chem. 223 (2): 897–905. PMID 13385237.
- ^ Burns JJ, Moltz A, Peyser P (1956). "Missing step in guinea pigs required for the biosynthesis of L-ascorbic acid". Science. 124 (3232): 1148–9. doi:10.1126/science.124.3232.1148-a. PMID 13380431.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Henson,, Donald Earl; Block, Gladys; Levine, Mark (1991). "Ascorbic Acid: Biologic Functions and Relation to Cancer" (PDF). Journal of the National Cancer Institute. 83 (8): 547–550. doi:10.1093/jnci/83.8.547. PMID 1672383.
{{cite journal}}
: CS1 maint: extra punctuation (link) - ^ "How Humans Make Up For An 'Inborn' Vitamin C Deficiency". ScienceDaily. Cell Press. March 21, 2008. Retrieved 2009-02-24.
- ^ a b Levine M, Rumsey SC, Wang Y, Park JB, Daruwala R (2000). "Vitamin C". In Stipanuk MH (ed.). Biochemical and physiological aspects of human nutrition. Philadelphia: W.B. Saunders. pp. 541–67. ISBN 0-7216-4452-X.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ (Gropper, et al., 2005)
- ^ Prockop DJ, Kivirikko KI (1995). "Collagens: molecular biology, diseases, and potentials for therapy". Annu Rev Biochem. 64: 403–34. doi:10.1146/annurev.bi.64.070195.002155. PMID 7574488.
- ^ Peterkofsky B (1 December 1991). "Ascorbate requirement for hydroxylation and secretion of procollagen: relationship to inhibition of collagen synthesis in scurvy". Am J Clin Nutr. 54 (6 Suppl): 1135S – 1140S. PMID 1720597.
- ^ Kivirikko KI, Myllylä R (1985). "Post-translational processing of procollagens". Ann. N. Y. Acad. Sci. 460: 187–201. doi:10.1111/j.1749-6632.1985.tb51167.x. PMID 3008623.
- ^ Rebouche CJ (1991). "Ascorbic acid and carnitine biosynthesis" (PDF). Am J Clin Nutr. 54 (6 Suppl): 1147S – 1152S. PMID 1962562.
- ^ Dunn WA, Rettura G, Seifter E, Englard S (1984). "Carnitine biosynthesis from gamma-butyrobetaine and from exogenous protein-bound 6-N-trimethyl-L-lysine by the perfused guinea pig liver. Effect of ascorbate deficiency on the in situ activity of gamma-butyrobetaine hydroxylase" (PDF). J Biol Chem. 259 (17): 10764–70. PMID 6432788.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Levine M, Dhariwal KR, Washko P; et al. (1992). "Ascorbic acid and reaction kinetics in situ: a new approach to vitamin requirements". J Nutr Sci Vitaminol. Spec No: 169–72. PMID 1297733.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Kaufman S (1974). "Dopamine-beta-hydroxylase". J Psychiatr Res. 11: 303–16. doi:10.1016/0022-3956(74)90112-5. PMID 4461800.
- ^ Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE (1993). "Peptidylglycine alpha-amidating monooxygenase: a multifunctional protein with catalytic, processing, and routing domains". Protein Sci. 2 (4): 489–97. doi:10.1002/pro.5560020401. PMC 2142366. PMID 8518727.
{{cite journal}}
: Unknown parameter|doi_brokendate=
ignored (|doi-broken-date=
suggested) (help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Eipper BA, Stoffers DA, Mains RE (1992). "The biosynthesis of neuropeptides: peptide alpha-amidation". Annu Rev Neurosci. 15: 57–85. doi:10.1146/annurev.ne.15.030192.000421. PMID 1575450.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Englard S, Seifter S (1986). "The biochemical functions of ascorbic acid". Annu. Rev. Nutr. 6: 365–406. doi:10.1146/annurev.nu.06.070186.002053. PMID 3015170.
- ^ Lindblad B, Lindstedt G, Lindstedt S (1970). "The mechanism of enzymic formation of homogentisate from p-hydroxyphenylpyruvate". J Am Chem Soc. 92 (25): 7446–9. doi:10.1021/ja00728a032. PMID 5487549.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ a b c d McGregor GP, Biesalski HK. Rationale and impact of vitamin C in clinical nutrition. Curr Opin Clin Nutr Metab Care 2006; 9:697–703
- ^ Kelly FJ. Use of antioxidants in the prevention and treatment of disease. J Int Fed Clin Chem 1998; 10:21–23
- ^ Mayne ST. Antioxidant nutrients and chronic disease: use of biomarkers of exposure and oxidative stress status in epidemiologic research. J Nutr 2003; 133 (Suppl 3):933S–940S
- ^ Tak PP, Zvaifler NJ, Green DR, Firestein GS. Rheumatoid arthritis and p53: how oxidative stress might alter the course of inflammatory diseases. Immunol Today 2000; 21:78–82.
- ^ Goodyear-Bruch C, Pierce JD. Oxidative stress in critically ill patients. Am J Crit Care 2002; 11:543–551; quiz 552–543.
- ^ Schorah CJ, Downing C, Piripitsi A, et al. Total vitamin C, ascorbic acid, and dehydroascorbic acid concentrations in plasma of critically ill patients. Am J Clin Nutr 1996; 63:760–765.
- ^ Bjelakovic G; Nikolova, D; Gluud, LL; Simonetti, RG; Gluud, C (2007). "Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis". JAMA. 297 (8): 842–57. doi:10.1001/jama.297.8.842. PMID 17327526.
- ^ Satoh K, Sakagami H. Effect of metal ions on radical intensity and cytotoxic activity of ascorbate. Anticancer Res 1997; 17:1125–1129.
- ^ Muhlhofer A, Mrosek S, Schlegel B, et al. High-dose intravenous vitamin C is not associated with an increase of pro-oxidative biomarkers. Eur J Clin Nutr 2004; 58:1151–1158.
- ^ see Chandra RK, 1997, "Nutrition and the immune system: an introduction". The American Journal of Clinical Nutrition 66 (2): 460S–463S. PMID 9250133.
- ^ a b c d "US Recommended Dietary Allowance (RDA)" (PDF). Archived from the original (PDF) on 2008-05-29. Retrieved 2007-02-19.
- ^ a b Milton K (2003). "Micronutrient intakes of wild primates: are humans different?". Comp Biochem Physiol a Mol Integr Physiol. 136 (1): 47–59. doi:10.1016/S1095-6433(03)00084-9. PMID 14527629.
- ^ a b Pauling, Linus (1970). "Evolution and the need for ascorbic acid". Proc Natl Acad Sci U S a. 67 (4): 1643–8. doi:10.1073/pnas.67.4.1643. PMC 283405. PMID 5275366. Cite error: The named reference "paulingevolution" was defined multiple times with different content (see the help page).
- ^ "Linus Pauling Vindicated; Researchers Claim RDA For Vitamin C is Flawed". PR Newswire. 6 July 2004. Retrieved 2007-02-20.
- ^ Cathcart, Robert (1994). "Vitamin C, Titrating To Bowel Tolerance, Anascorbemia, and Acute Induced Scurvy". Orthomed. Retrieved 2007-02-22.
- ^ "Vitamin and mineral requirements in human nutrition, 2nd edition" (PDF). World Health Organization. 2004. Retrieved 2007-02-20.
- ^ http://www.hc-sc.gc.ca/dhp-mps/prodnatur/applications/licen-prod/monograph/mono_vitamin_c_e.html hc-sc.gc.ca
- ^ Higdon, Jane. "Linus Pauling Institute Recommendations". Oregon State University. Retrieved 2007-04-11.
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ Roc Ordman. "The Scientific Basis Of The Vitamin C Dosage Of Nutrition Investigator". Beloit College. Archived from the original on 2008-03-07. Retrieved 2007-02-22.
- ^ "Vitamin C Foundation's RDA". Retrieved 2007-02-12.
- ^ Levy, Thomas E. (2002). Vitamin C Infectious Diseases, & Toxins. Xlibris. ISBN 1401069630. OCLC 123353969.
{{cite book}}
: Cite has empty unknown parameter:|coauthors=
(help) Chapter 5 - Vitamin C optidosing. - ^ a b Pauling, Linus (1986). How to Live Longer and Feel Better. W. H. Freeman and Company. ISBN 0-380-70289-4. OCLC 154663991 15690499.
{{cite book}}
: Check|oclc=
value (help) - ^ WHO (June 4, 2001). "Area of work: nutrition. Progress report 2000" (PDF). Archived from the original (PDF) on 2007-07-03.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Olmedo JM, Yiannias JA, Windgassen EB, Gornet MK (2006). "Scurvy: a disease almost forgotten". Int. J. Dermatol. 45 (8): 909–13. doi:10.1111/j.1365-4632.2006.02844.x. PMID 16911372.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Velandia B, Centor RM, McConnell V, Shah M (2008). "Scurvy is still present in developed countries". J Gen Intern Med. 23 (8): 1281–4. doi:10.1007/s11606-008-0577-1. PMC 2517958. PMID 18459013.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Shenkin A (2006). "The key role of micronutrients". Clin Nutr. 25 (1): 1–13. doi:10.1016/j.clnu.2005.11.006. PMID 16376462.
- ^ Woodside J, McCall D, McGartland C, Young I (2005). "Micronutrients: dietary intake v. supplement use". Proc Nutr Soc. 64 (4): 543–53. doi:10.1079/PNS2005464. PMID 16313697.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Stanner SA, Hughes J, Kelly CN, Buttriss J (2004). "A review of the epidemiological evidence for the 'antioxidant hypothesis'". Public Health Nutr. 7 (3): 407–22. doi:10.1079/PHN2003543. PMID 15153272.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Rivers, Jerry M (1987). "Safety of High-level Vitamin C Ingestion". Annals of the New York Academy of Sciences. 498: 445. doi:10.1111/j.1749-6632.1987.tb23780.x. PMID 3304071.
- ^ Hasan MY, Alshuaib WB, Singh S, Fahim MA (2003). "Effects of ascorbic acid on lead induced alterations of synaptic transmission and contractile features in murine dorsiflexor muscle". Life Sci. 73 (8): 1017–25. doi:10.1016/S0024-3205(03)00374-6. PMID 12818354.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Dawson E, Evans D, Harris W, Teter M, McGanity W (1999). "The effect of ascorbic acid supplementation on the blood lead levels of smokers". J Am Coll Nutr. 18 (2): 166–70. PMID 10204833.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Simon JA, Hudes ES (1999). "Relationship of ascorbic acid to blood lead levels". JAMA. 281 (24): 2289–93. doi:10.1001/jama.281.24.2289. PMID 10386552.
- ^
Huang J, Agus DB, Winfree CJ, Kiss S, Mack WJ, McTaggart RA, Choudhri TF, Kim LJ, Mocco J, Pinsky DJ, Fox WD, Israel RJ, Boyd TA, Golde DW, Connolly ES Jr. (2001). "Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke". Proceedings of the National Academy of Sciences. 98 (20): 11720–4. doi:10.1073/pnas.171325998. PMC 58796. PMID 11573006.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Audera (2001). "Mega-dose vitamin C in treatment of the common cold: a randomised controlled trial". Medical Journal of Australia. 389: 175.
{{cite journal}}
: Cite has empty unknown parameter:|unused_data=
(help); Text "first C" ignored (help) - ^ Douglas, RM; Hemilä, H (2005). "Vitamin C for Preventing and Treating the Common Cold". PLoS Medicine. 2 (6): e168. doi:10.1371/journal.pmed.0020168. PMC 1160577. PMID 15971944.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ Stone, Irwin (1972). The Healing Factor: Vitamin C Against Disease. Grosset and Dunlap. ISBN 0-448-11693-6. OCLC 3967737.
- ^ Choi, MD, DrPH, Hyon K.; Gao, X; Curhan, G (March 9, 2009). "Vitamin C Intake and the Risk of Gout in Men". Archives of Internal Medicine. 169 (5): 502–507. doi:10.1001/archinternmed.2008.606. PMC 2767211. PMID 19273781.
{{cite journal}}
: More than one of|first1=
and|first=
specified (help); More than one of|last1=
and|last=
specified (help); Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: multiple names: authors list (link) - ^ a b Rath MW, Pauling LC. U.S. patent 5,278,189 Prevention and treatment of occlusive cardiovascular disease with ascorbate and substances that inhibit the binding of lipoprotein(a). USPTO. 11 Jan 1994.
- ^ Hemilä H, Louhiala P (2007). "Vitamin C for preventing and treating pneumonia". Cochrane Database Syst Rev (1): CD005532. doi:10.1002/14651858.CD005532.pub2. PMID 17253561.
- ^ Vitamin and Mineral Supplements from the American Heart Association
- ^ "Nigeria: Vitamin C Can Suppress HIV/Aids Virus". allAfrica.com. 2006-05-22. Retrieved 2006-06-16.
- ^ Boseley, Sarah (2005-05-14). "Discredited doctor's 'cure' for Aids ignites life-and-death struggle in South Africa". The Guardian. Retrieved 2007-02-21.
- ^ Levy SE, Hyman SL (2005). "Novel treatments for autistic spectrum disorders". Ment Retard Dev Disabil Res Rev. 11 (2): 131–42. doi:10.1002/mrdd.20062. PMID 15977319.
- ^ Akmal M, Qadri J, Al-Waili N, Thangal S, Haq A, Saloom K (2006). "Improvement in human semen quality after oral supplementation of vitamin C". J Med Food. 9 (3): 440–2. doi:10.1089/jmf.2006.9.440. PMID 17004914.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Evans JR; Evans, Jennifer R (2006). "Antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration". Cochrane Database Syst Rev (2): CD000254. doi:10.1002/14651858.CD000254.pub2. PMID 16625532.
- ^ Evans J (2008). "Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis". Eye. 22 (6): 751–60. doi:10.1038/eye.2008.100. PMID 18425071.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Baillie JK, Thompson AA, Irving JB; et al. (2009). "Oral antioxidant supplementation does not prevent acute mountain sickness: double blind, randomized placebo-controlled trial". QJM. 102 (5): 341–8. doi:10.1093/qjmed/hcp026. PMID 19273551.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Rumbold A, Duley L, Crowther CA, Haslam RR (2008). "Antioxidants for preventing pre-eclampsia". Cochrane Database Syst Rev (1): CD004227. doi:10.1002/14651858.CD004227.pub3. PMID 18254042.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Orrell RW, Lane RJ, Ross M (2007). "Antioxidant treatment for amyotrophic lateral sclerosis / motor neuron disease". Cochrane Database Syst Rev (1): CD002829. doi:10.1002/14651858.CD002829.pub4. PMID 17253482.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Libby, Alfred F. & Stone, Irwin (1977-07-16), The Hypoascorbemia-Kwashiorkor Approach to Drug Addiction Therapy: A Pilot Study
{{citation}}
: CS1 maint: multiple names: authors list (link) - ^ Kaur B, Rowe BH, Arnold E (2009). "Vitamin C supplementation for asthma". Cochrane Database Syst Rev (1): CD000993. doi:10.1002/14651858.CD000993.pub3. PMID 19160185.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Hemilä H, Koivula TT (2008). "Vitamin C for preventing and treating tetanus". Cochrane Database Syst Rev (2): CD006665. doi:10.1002/14651858.CD006665.pub2. PMID 18425960.
- ^ High Doses of Vitamin C Are Not Effective as a Cancer Treatment
- ^ "FDA OKs vitamin C trial for cancer". Physorg.com. January 12, 2007. Retrieved 2007-04-06.
Federal approval of a clinical trial on intravenous vitamin C as a cancer treatment lends credence to alternative cancer care, U.S. researchers said.
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ Yeom CH, Jung GC, Song KJ (2007). "Changes of terminal cancer patients' health-related quality of life after high dose vitamin C administration". J. Korean Med. Sci. 22 (1): 7–11. doi:10.3346/jkms.2007.22.1.7. PMC 2693571. PMID 17297243.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ from Science News, Vitamin C Injections Slow Tumor Growth In Mice as reported in ScienceDaily Aug. 5, 2008. Retrieved August 5, 2008.
- ^ "Vitamin C (Ascorbic acid)". MedLine Plus. National Institute of Health. 2006-08-01. Retrieved 2007-08-03.
- ^ Vitamin C by the American Cancer Society
- ^ Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2008). "Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases". Cochrane Database Syst Rev (2): CD007176. doi:10.1002/14651858.CD007176. PMID 18425980.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Huang HY, Caballero B, Chang S; et al. (2006). "Multivitamin/mineral supplements and prevention of chronic disease" (PDF). Evid Rep Technol Assess (Full Rep) (139): 1–117. PMID 17764205.
{{cite journal}}
: Explicit use of et al. in:|author=
(help); Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Brzozowska A, Kaluza J, Knoops KT, de Groot LC (2008). "Supplement use and mortality: the SENECA study". Eur J Nutr. 47 (3): 131–7. doi:10.1007/s00394-008-0706-y. PMID 18414768.
{{cite journal}}
: Unknown parameter|month=
ignored (help)CS1 maint: multiple names: authors list (link) - ^ Emadi-Konjin P, Verjee Z, Levin A, Adeli K (2005). "Measurement of intracellular vitamin C levels in human lymphocytes by reverse phase high performance liquid chromatography (HPLC)" (PDF). Clinical Biochemistry. 38 (5): 450–6. doi:10.1016/j.clinbiochem.2005.01.018. PMID 15820776.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Yamada H, Yamada K, Waki M, Umegaki K. (2004). "Lymphocyte and Plasma Vitamin C Levels in Type 2 Diabetic Patients With and Without Diabetes Complications" (PDF). Diabetes Care. 27 (10): 2491–2. doi:10.2337/diacare.27.10.2491. PMID 15451922.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Toxicological evaluation of some food additives including anticaking agents, antimicrobials, antioxidants, emulsifiers and thickening agents". World Health Organization. 4 July 1973. Retrieved 2007-04-13.
- ^ Fleming DJ, Tucker KL, Jacques PF, Dallal GE, Wilson PW, Wood RJ (2002). "Dietary factors associated with the risk of high iron stores in the elderly Framingham Heart Study cohort" (PDF). Am. J. Clin. Nutr. 76 (6): 1375–84. PMID 12450906.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Cook JD, Reddy MB (2001). "Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet" (PDF). Am. J. Clin. Nutr. 73 (1): 93–8. PMID 11124756.
- ^ Goodwin JS, Tangum MR (1998). "Battling quackery: attitudes about micronutrient supplements in American academic medicine". Arch. Intern. Med. 158 (20): 2187–91. doi:10.1001/archinte.158.20.2187. PMID 9818798.
{{cite journal}}
: Unknown parameter|month=
ignored (help) - ^ Massey LK, Liebman M, Kynast-Gales SA (2005). "Ascorbate increases human oxaluria and kidney stone risk" (PDF). J. Nutr. 135 (7): 1673–7. PMID 15987848.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Naidu KA (2003). "Vitamin C in human health and disease is still a mystery? An overview" (PDF). J. Nutr. 2 (7): 7. doi:10.1186/1475-2891-2-7. PMC 201008. PMID 14498993.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - ^ S. Mashour, MD, J. F. Turner Jr., MD, FCCP, and R. Merrell, MD (2000). "Acute Renal Failure, Oxalosis, and Vitamin C Supplementation* A Case Report and Review of the Literature". Chest. 118: 561. doi:10.1378/chest.118.2.561.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Ovcharov R, Todorov S (1974). "[The effect of vitamin C on the estrus cycle and embryogenesis of rats]". Akusherstvo i ginekologii͡a (in Bulgarian). 13 (3): 191–5. PMID 4467736.
- ^ Vobecky JS, Vobecky J, Shapcott D, Cloutier D, Lafond R, Blanchard R (1976). "Vitamins C and E in spontaneous abortion". International journal for vitamin and nutrition research. Internationale Zeitschrift für Vitamin- und Ernährungsforschung. Journal international de vitaminologie et de nutrition. 46 (3): 291–6. PMID 988001.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Javert CT, Stander HJ (1943). "Plasma Vitamin C and Prothrombin Concentration in Pregnancy and in Threatened, Spontaneous, and Habitual Abortion". Surgery, Gynecology, and Obstetrics. 76: 115–122.
- ^ Mari-Carmen Gomez-Cabrera; et al. (2008-01). "Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance". American Journal of Clinical Nutrition. 87 (1): 142–9. PMID 18175748.
{{cite journal}}
: Check date values in:|date=
(help); Explicit use of et al. in:|author=
(help); More than one of|number=
and|issue=
specified (help) - ^ "Cancer-Causing Compound Can Be Triggered By Vitamin C". 2007-03-13. Retrieved 2009-12-26.
- ^ Wilson JX (2005). "Regulation of vitamin C transport". Annu. Rev. Nutr. 25: 105–25. doi:10.1146/annurev.nutr.25.050304.092647. PMID 16011461.
- ^ "The vitamin and mineral content is stable". Danish Veterinary and Food Administration. Retrieved 2010-02-26.
- ^ "National Nutrient Database". Nutrient Data Laboratory of the US Agricultural Research Service. Retrieved 2007-03-07.
- ^ "Vitamin C Food Data Chart". Healthy Eating Club. Retrieved 2007-03-07.
- ^ "Natural food-Fruit Vitamin C Content". The Natural Food Hub. Retrieved 2007-03-07.
- ^ Chatterjee, IB (1973). "Evolution and the Biosynthesis of Ascorbic Acid". Science. 182 (118): 1271–1272. doi:10.1126/science.182.4118.1271. PMID 4752221.
- ^ Irwin Stone, PC-A (1979). "Eight Decades of Scurvy". Orthomolecular Psychiatry. 8, (2): 58–62.
{{cite journal}}
: CS1 maint: extra punctuation (link) - ^ Clark, Stephanie, Ph. D (8 January 2007). "Comparing Milk: Human, Cow, Goat & Commercial Infant Formula". Washington State University. Retrieved 2007-02-28.
{{cite web}}
: CS1 maint: multiple names: authors list (link) - ^ Toutain, P. L. (November 1997). "Ascorbic acid disposition kinetics in the plasma and tissues of calves". Am J Physiol Regul Integr Comp Physiol. 273, (5, R1585 – R1597): 1585. PMID 9374798.
{{cite journal}}
: Unknown parameter|coauthors=
ignored (|author=
suggested) (help)CS1 maint: extra punctuation (link) - ^ Mal. G. (2000) Indian Veterinary Journal; 77: 695-696
- ^ Roig, M. G.; Rivera, Z. S.; Kennedy, J. F. (1995). "A model study on rate of degradation of L-ascorbic acid during processing using home-produced juice concentrates". International Journal of Food Sciences and Nutrition. 46 (2): 107–115. doi:10.3109/09637489509012538. PMID 7621082.
- ^ Allen, MA,; Burgess, S. G. (1950). "The Losses of Ascorbic Acid during the Large-scale Cooking of Green Vegetables by Different Methods". British Journal of Nutrition. 4 (2–3): 95–100. doi:10.1079/BJN19500024. PMID 14801407.
{{cite journal}}
: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link) - ^ G. F., Combs (2001). The Vitamins, Fundamental Aspects in Nutrition and Health (2nd ed.). San Diego, CA: Academic Press. pp. 245–272. ISBN 9780121834920.
- ^ Hitti, Miranda (2 June 2006). "Fresh-Cut Fruit May Keep Its Vitamins". WebMD. Retrieved 2007-02-25.
- ^ The Diet Channel Vitamin C might be the most widely known and most popular vitamin purchased as a supplement.
- ^ "The production of vitamin C" (PDF). Competition Commission. 2001. Retrieved 2007-02-20.
- ^ Patton, Dominique (2005-10-20). "DSM makes last stand against Chinese vitamin C". nutraingredients. Retrieved 2007-02-20.
- ^ Starling, Shane (2008-06-26). "DSM vitamin plant gains green thumbs-up". Decision News Media SAS. Retrieved 2010-02-25.
- ^ "Vitamin C: Distruptions to Production in China to Maintain Firm Market". Flexnews. 2008-06-30. Retrieved 2010-02-25.
- ^ a b "Addition of Vitamins and Minerals to Food, 2005". Health Canada. Retrieved 2010-02-25.
- ^ British Pharmacopoeia Commission Secretariat (2009). "Index, BP 2009" (PDF). Retrieved 4 February 2010.
{{cite web}}
: Cite has empty unknown parameter:|coauthors=
(help) - ^ "Japanese Pharmacopoeia, Fifteenth Edition" (PDF). 2006. Retrieved 4 Februally 2010.
{{cite web}}
: Check date values in:|accessdate=
(help); Cite has empty unknown parameter:|coauthors=
(help)
Further reading
- Pauling, Linus (1976). Vitamin C, the Common Cold, and the Flu. W H Freeman & Co. ISBN 0716703610. OCLC 2388395.
{{cite book}}
: Cite has empty unknown parameter:|coauthors=
(help) - Cameron, Ewan (1979). Cancer and Vitamin C. Pauling Institute of Science and Medicine. ISBN 0393500004. OCLC 5788147.
{{cite book}}
: Cite has empty unknown parameter:|unused_data=
(help); Text "Ewan Cameron" ignored (help)CS1 maint: extra punctuation (link) - Clemetson, C.A.B (1989). Vitamin C. Boca Raton, Florida: CRC Press. ISBN 0-8493-4841-2. OCLC 165609070 17918592.
{{cite book}}
: Check|oclc=
value (help); Cite has empty unknown parameter:|coauthors=
(help) Monograph - Volumes I, II, III.
External links
- Jane Higdon, "Vitamin C", Micronutrient Information Center, Linus Pauling Institute, Oregon State University
- U.S. patent 5,278,189 — "Prevention and treatment of occlusive cardiovascular disease with ascorbate and substances that inhibit the binding of lipoprotein (a)", Inventors: Matthias W. Rath and Linus C. Pauling
- vitamin C at United Kingdom Food Standards Agency
- Naidu KA (2003). "Vitamin C in human health and disease is still a mystery? An overview". Nutrition journal. 2: 7. doi:10.1186/1475-2891-2-7. PMC 201008. PMID 14498993.
{{cite journal}}
: CS1 maint: unflagged free DOI (link) - Vitamin C Requirements: Optimal Health Benefits vs Overdose — a moderate dose advocacy site
- Vitamin C information from U.S. MedlinePlus Health Information