Jump to content

Isotopes of terbium

From Wikipedia, the free encyclopedia
(Redirected from Terbium-150m)

Isotopes of terbium (65Tb)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
157Tb synth 71 y ε 157Gd
158Tb synth 180 y ε 158Gd
β 158Dy
159Tb 100% stable
Standard atomic weight Ar°(Tb)

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb (t1/2 = 24.4 hours), 154m2Tb (t1/2 = 22.7 hours) and 154m1Tb (t1/2 = 9.4 hours).

The primary decay mode before the most abundant stable isotope, 159Tb, is electron capture, and the primary mode behind is beta decay. The primary decay products before 159Tb are element Gd (gadolinium) isotopes, and the primary products after 159Tb are element Dy (dysprosium) isotopes.

List of isotopes

[edit]


Nuclide
[n 1]
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6][n 7]
Spin and
parity[1]
[n 8][n 4]
Isotopic
abundance
Excitation energy[n 4]
135Tb 65 70 134.96452(43)# 1.01(28) ms p 134Gd (7/2−)
139Tb 65 74 138.94833(32)# 1.6(2) s β+ 139Gd 5/2−#
140Tb 65 75 139.94581(86) 2.29(15) s β+ (99.74%) 140Gd (7+)
EC (<3%) 140Gd
β+, p (0.26%) 139Eu
141Tb 65 76 140.94145(11) 3.5(2) s β+ 141Gd (5/2−)
141mTb[n 9][n 10] 0(200)# keV 7.9(6) s β+ 141Gd 11/2−#
142Tb 65 77 141.93928(75) 597(17) ms β+ (96.8%) 142Gd 1+
EC (3.2%) 142Gd
β+, p (0.0022%) 141Eu
142m1Tb 279.7(4) keV 303(17) ms IT 142Tb 5−
142m2Tb 652.1(6) keV 26(1) μs IT 142Tb 8+
143Tb 65 78 142.935137(55) 12(1) s β+ 143Gd (11/2−)
143mTb[n 9] 0(100)# keV 17(4) s 5/2+#
144Tb 65 79 143.933045(30) ~1 s β+ 144Gd 1+
144m1Tb 396.9(5) keV 4.25(15) s IT (66%) 144Tb 6−
β+ (34%) 144Gd
144m2Tb 476.2(5) keV 2.8(3) μs IT 144Tb (8−)
144m3Tb 517.1(5) keV 670(60) ns IT 144Tb (9+)
144m4Tb 544.5(6) keV <300 ns IT 144Tb (10+)
145Tb 65 80 144.92872(12) 30.9(6) s β+ 145Gd (11/2−)
145mTb[n 9] 860(230) keV (3/2+)
146Tb 65 81 145.927253(48) 8(4) s β+ 146Gd 1+
146m1Tb[n 9] 150(100)# keV 24.1(5) s β+ 146Gd 5−
146m2Tb 930(100)# keV 1.18(2) ms IT 146Tb 10+
147Tb 65 82 146.9240546(87) 1.64(3) h β+ 147Gd (1/2+)
147mTb 50.6(9) keV 1.87(5) min β+ 147Gd (11/2−)
148Tb 65 83 147.924275(13) 60(1) min β+ 148Gd 2−
148m1Tb 90.1(3) keV 2.20(5) min β+ 148Gd (9)+
148m2Tb 8618.6(10) keV 1.310(7) μs IT 148Tb (27+)
149Tb 65 84 148.9232538(39) 4.118(25) h β+ (83.3%) 149Gd 1/2+
α (16.7%) 145Eu
149mTb 35.78(13) keV 4.16(4) min β+ (99.98%) 149Gd 11/2−
α (0.022%) 145Eu
150Tb 65 85 149.9236648(79) 3.48(16) h β+ 150Gd (2)−
150mTb 461(27) keV 5.8(2) min β+ 150Gd 9+
151Tb 65 86 150.9231090(44) 17.609(1) h β+ (99.99%) 151Gd 1/2+
α (.0095%) 147Eu
151mTb 99.53(5) keV 25(3) s IT (93.4%) 151Tb 11/2−
β+ (6.6%) 151Gd
152Tb 65 87 151.924082(43) 17.8784(95) h[5] EC (83%)[5] 152Gd 2−
β+ (17%)[5]
α (<7×10−7%)[6] 148Eu
152m1Tb 342.15(16) keV 960(10) ns IT 152Tb 5−
152m2Tb 501.74(19) keV 4.2(1) min IT (78.9%) 152Tb 8+
β+ (21.1%) 152Gd
153Tb 65 88 152.9234417(42) 2.34(1) d β+ 153Gd 5/2+
153mTb 163.175(5) keV 186(4) μs IT 153Tb 11/2−
154Tb 65 89 153.924684(49) 9.994(39) h β+ 154Gd 3−
154m1Tb[n 9] 130(50)# keV 21.5(4) h β+ 154Gd 0−
154m2Tb[n 9] 200(150)# keV 22.7(5) h β+ 154Gd 7−
154m3Tb 405(150)# keV 513(42) ns IT 154Tb
155Tb 65 90 154.923510(11) 5.32(6) d EC 155Gd 3/2+
156Tb 65 91 155.9247542(40) 5.35(10) d β+ 156Gd 3−
156m1Tb 88.4(2) keV 5.3(2) h IT 156Tb (0+)
156m2Tb 100(50)# keV 24.4(10) h IT 156Tb (7−)
157Tb 65 92 156.9240319(11) 71(7) y EC 157Gd 3/2+
158Tb 65 93 157.9254199(14) 180(11) y β+ (83.4%) 158Gd 3−
β (16.6%) 158Dy
158m1Tb 110.3(12) keV 10.70(17) s IT 158Tb 0−
158m2Tb 388.39(11) keV 0.40(4) ms IT 158Tb 7−
159Tb[n 11] 65 94 158.9253537(12) Stable 3/2+ 1.0000
160Tb 65 95 159.9271746(12) 72.3(2) d β 160Dy 3−
161Tb[n 11] 65 96 160.9275768(13) 6.948(5) d β 161Dy 3/2+
162Tb 65 97 161.9292754(22) 7.60(15) min β 162Dy (1−)
162mTb 286(3) keV 10# min 4−#
163Tb 65 98 162.9306536(44) 19.5(3) min β 163Dy 3/2+
164Tb 65 99 163.9333276(20) 3.0(1) min β 164Dy (5+)
164mTb 145(12) keV 2# min 2+#
165Tb 65 100 164.9349552(17) 2.11(10) min β 165Dy (3/2+)
165mTb 207(5) keV 0.81(8) μs IT 165Tb (7/2−)
166Tb 65 101 165.9379397(16) 27.1(15) s β 166Dy (1−)
166mTb 159.0(15) keV 3.5(4) μs IT 166Tb 4−#
167Tb 65 102 166.9400070(21) 18.9(16) s β 167Dy (3/2+)
167mTb 200(6) keV 1.2(1) μs IT 167Tb (7/2−)
168Tb 65 103 167.9433371(45) 9.4(4) s β 168Dy (4−)
168mTb 211(1) keV 0.71(3) μs IT 168Tb (6+)
169Tb 65 104 168.94581(32)# 5.13(32) s β 169Dy 3/2+#
170Tb 65 105 169.94986(32)# 960(78) ms β 170Dy 2−#
171Tb 65 106 170.95301(43)# 1.23(10) s β 171Dy 3/2+#
172Tb 65 107 171.95739(54)# 760(190) ms β 172Dy 6+#
173Tb 65 108 172.96081(54)# 400# ms
[>550 ns]
3/2+#
174Tb 65 109 173.96568(54)# 240# ms
[>550 ns]
2−#
This table header & footer:
  1. ^ mTb – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold italics symbol as daughter – Daughter product is nearly stable.
  7. ^ Bold symbol as daughter – Daughter product is stable.
  8. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  9. ^ a b c d e f Order of ground state and isomer is uncertain.
  10. ^ Discovery of this isotope is disputed.
  11. ^ a b Fission product

References

[edit]
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Terbium". CIAAW. 2021.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ a b c Collins, S.M.; Köster, U.; Robinson, A.P.; Ivanov, P.; Cocolios, T.E.; Russell, B.; Fenwick, A.J.; Bernerd, C.; Stegemann, S.; Johnston, K.; Gerami, A.M.; Chrysalidis, K.; Mohamud, H.; Ramirez, N.; Bhaisare, A.; Mewburn-Crook, J.; Cullen, D.M.; Pietras, B.; Pells, S.; Dockx, K.; Stucki, N.; Regan, P.H. (2023). "Determination of the Terbium-152 half-life from mass-separated samples from CERN-ISOLDE and assessment of the radionuclide purity". Applied Radiation and Isotopes. 202. Elsevier BV: 111044. doi:10.1016/j.apradiso.2023.111044. ISSN 0969-8043. PMID 37797447.
  6. ^ "Adopted Levels for 152Tb". NNDC Chart of Nuclides.