Jump to content

Speech: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
No edit summary
No edit summary
Line 9: Line 9:
[[File:Echtzeit MRT - Sprechen.ogv|thumb|Speech production (German) visualized by [[Real-time MRI]] ]]
[[File:Echtzeit MRT - Sprechen.ogv|thumb|Speech production (German) visualized by [[Real-time MRI]] ]]


''' ''' is the vocalized form of processes to enhance and organize [[cognition]] in the form of an [[Stream of consciousness (psychology)|interior monologue]].
''' ''' is the vocalized form of [[human]] communication. It is based upon the [[syntactic]] combination of [[Lexicon|lexical]]s and [[name]]s that are drawn from very large (usually to about 10,000 different [[words]]) [[vocabulary|vocabularies]]. Each spoken word is created out of the [[phonetic]] combination of a limited set of [[vowel]] and [[consonant]] speech sound units. These vocabularies, the syntax which structures them, and their set of speech sound units differ, creating the existence of many thousands of different types of [[mutual intelligibility|mutually unintelligible]] human [[language]]s. Human speakers ([[Multilingualism|polyglot]]s) are often able to communicate in two or more of them. The vocal abilities that enable humans to produce speech also provide humans with the ability to [[singing|sing]].

of human communication exists for the [[deaf]] in the form of [[sign language]]. Speech in some [[culture]]s has become the basis of a [[written language]], often one that differs in its vocabulary, syntax and phonetics from its associated spoken one, a situation called [[diglossia]]. Speech in addition to its use in communication, it is suggested by some [[psychologist]]s such as [[Vygotsky]] is internally used by mental processes to enhance and organize [[cognition]] in the form of an [[Stream of consciousness (psychology)|interior monologue]].


Speech is researched in terms of the speech production and [[speech perception]] of the [[sounds]] used in [[spoken language]]. Other research topics concern [[speech repetition]], the ability to map heard spoken words into the vocalizations needed to recreated that plays a key role in the [[vocabulary]] expansion in [[children]] and [[speech error]]s. Several academic disciplines study these including [[acoustics]], [[psychology]], [[speech pathology]], [[linguistics]], [[cognitive science]], [[communication studies]], [[otolaryngology]] and [[computer science]]. Another area of research is how the [[human brain]] in its different areas such as the [[Broca's area]] and [[Wernicke's area]] underlies speech.
Speech is researched in terms of the speech production and [[speech perception]] of the [[sounds]] used in [[spoken language]]. Other research topics concern [[speech repetition]], the ability to map heard spoken words into the vocalizations needed to recreated that plays a key role in the [[vocabulary]] expansion in [[children]] and [[speech error]]s. Several academic disciplines study these including [[acoustics]], [[psychology]], [[speech pathology]], [[linguistics]], [[cognitive science]], [[communication studies]], [[otolaryngology]] and [[computer science]]. Another area of research is how the [[human brain]] in its different areas such as the [[Broca's area]] and [[Wernicke's area]] underlies speech.

Revision as of 06:24, 13 November 2011

Speech production (English) visualized by Real-time MRI
Speech production (Chinese) visualized by Real-time MRI
Speech production (German) visualized by Real-time MRI

is the vocalized form of processes to enhance and organize cognition in the form of an interior monologue.

Speech is researched in terms of the speech production and speech perception of the sounds used in spoken language. Other research topics concern speech repetition, the ability to map heard spoken words into the vocalizations needed to recreated that plays a key role in the vocabulary expansion in children and speech errors. Several academic disciplines study these including acoustics, psychology, speech pathology, linguistics, cognitive science, communication studies, otolaryngology and computer science. Another area of research is how the human brain in its different areas such as the Broca's area and Wernicke's area underlies speech.

It is controversial how far human speech is unique in that other animals also communicate with vocalizations. While none in the wild have compatibly large vocabularies, research upon the nonverbal abilities of language trained apes such as Washoe and Kanzi raises the possibility that they might have these capabilities.

The origins of speech are unknown and subject to much debate and speculation.

Speech production

In linguistics (articulatory phonetics), manner of articulation describes how the tongue, lips, jaw, and other speech organs are involved in making a sound make contact. Often the concept is only used for the production of consonants. For any place of articulation, there may be several manners, and therefore several homorganic consonants.

Normal human speech is produced with pulmonary pressure provided by the lungs which creates phonation in the glottis in the larynx that is then modified by the vocal tract into different vowels and consonants. However humans can pronounce words without the use of the lungs and glottis in alaryngeal speech of which there are three types: esophageal speech, pharyngeal speech and buccal speech (better known as Donald Duck talk).

Speech perception

Speech perception refers to the processes by which humans are able to interpret and understand the sounds used in language. The study of speech perception is closely linked to the fields of phonetics and phonology in linguistics and cognitive psychology and perception in psychology. Research in speech perception seeks to understand how human listeners recognize speech sounds and use this information to understand spoken language. Speech research has applications in building computer systems that can recognize speech, as well as improving speech recognition for hearing- and language-impaired listeners.

Speech repetition

Spoken vocalizations are quickly turned from sensory inputs into motor instructions needed for their immediate or delayed (in phonological memory) vocal imitation. This occurs independently of speech perception. This mapping plays a key role in enabling children to expand their spoken vocabulary and hence the ability of human language to transmit across generations.[1]

Speech errors

Speech is a complex activity with the result that spoken errors are often made. These have been used by scientists to understand the nature of the processes involved in its production.

Problems involving speech

There are several organic and psychological factors that can affect speech. Among these are:

  1. Diseases and disorders of the lungs or the vocal cords, including paralysis, respiratory infections (bronchitis), vocal fold nodules and cancers of the lungs and throat.
  2. Diseases and disorders of the brain, including alogia, aphasias, dysarthria, dystonia and speech processing disorders, where impaired motor planning, nerve transmission, phonological processing or perception of the message (as opposed to the actual sound) leads to poor speech production.
  3. Hearing problems, such as otitis media effusion and auditory processing disorder can lead to phonological problems.
  4. Articulatory problems, such as stuttering, lisping, cleft palate, ataxia, or nerve damage leading to problems in articulation. Tourette syndrome and tics can also affect speech. Many speakers also have a slur in their voice
  5. In addition to dysphasia, anomia and auditory processing disorder can impede the quality of auditory perception, and therefore, expression. Those who are Hard of Hearing or deaf may be considered to fall into this category.

Speech and the brain

Paul Broca

Two areas of the cerebral cortex are necessary for speech. Broca's area, named after its discoverer, French neurologist Paul Broca (1824-1880), is in the frontal lobe, usually on the left, near the motor cortex controlling muscles of the lips, jaws, soft palate and vocal cords. When damaged by a stroke or injury, comprehension is unaffected but speech is slow and labored and the sufferer will talk in "telegramese". Wernicke's area, discovered in 1874 by German neurologist Carl Wernicke (1848-1904), lies to the back of the temporal lobe, again, usually on the left, near the areas receiving auditory and visual information. Damage to it destroys comprehension - the sufferer speaks fluently but nonsensically.

American psycholinguist Noam Chomsky (b. 1928) has suggested that rules for meaning and grammar are inborn. This idea is supported by studies of children's speech. Their first negative statements consist of adding "no" or "not" to a positive statement: "no dog like it," instead of "dogs don't like it". Later they use the uncontracted form form of will: "I will read you book," though they hear adults say "I'll read you a book." These habits are universal in young children, suggesting the idea of innate grammar.

See also

References

  1. ^ Masur EF. (1995). Infants' early verbal imitation and their later lexical development. Merrill-Palmer Quarterly, 41, 286-306.OCLC 89395784