Jump to content

Silicon-vacancy center in diamond

From Wikipedia, the free encyclopedia
The semi-divacancy model of the Si-V center, which is also common for other large impurities in diamond, such as Ni, Co, Ge and S.
Luminescence maps of the Si-V center in diamond produced by ion implantation: x-y (top) and x-z (bottom). The x-z depth map was measured along the black line in the top image.[1]

The silicon-vacancy center (Si-V) is an optically active defect in diamond (referred to as a color center) that is receiving an increasing amount of interest in the diamond research community. This interest is driven primarily by the coherent optical properties of the Si-V, especially compared to the well-known and extensively-studied nitrogen-vacancy center (N-V). While the negative SiV- center has received the majority of the silicon-vacancy center research, interest is growing in the neutral SiV0 center as well.

Properties

[edit]

Crystallographic

[edit]

The Si-V center is formed by replacing two neighboring carbon atoms in the diamond lattice with one silicon atom, which places itself between the two vacant lattice sites. This configuration has a D3d point group symmetry.[2]

Electronic

[edit]

The Si-V center is a single-hole (spin-1/2) system with ground and excited electronic states located within the diamond bandgap. The ground and excited electronic states have two orbital states split by spin–orbit coupling. Each of these spin–orbit states is doubly degenerate by spin, and this splitting can be affected by lattice strain. Phonons in the diamond lattice drive transitions between these orbital states, causing rapid equilibration of the orbital population at temperatures above ca. 1 K.[3]

All four transitions between the two ground and two excited orbital states are dipole allowed with a sharp zero-phonon line (ZPL) at 738 nm (1.68 eV)[4] and minimal phononic sideband in a roughly 20 nm window around 766 nm.[5] The Si-V center emits much more of its emission into its ZPL, approximately 70% (Debye–Waller factor of 0.7), than most other optical centers in diamond, such as the nitrogen-vacancy center (Debye–Waller factor ~ 0.04).[6] The Si-V center also has higher excited states that relax quickly to the lowest excited states, allowing off-resonant excitation.

The Si-V center has an inversion symmetry, and no static electric dipole moment (to the first order); it is therefore insensitive to the Stark shift that could result from inhomogeneous electric fields within the diamond lattice. This property, together with the weak electron-phonon coupling, results in a narrow ZPL in the Si-V center, which is mostly limited by its intrinsic lifetime.[7] Bright photoluminescence, narrow optical lines, and ease of finding optically indistinguishable Si-V centers favor them for applications in solid-state quantum optics.

Spin

[edit]

Although the optical transitions of the Si-V center preserve the electron spin, the rapid phonon-induced mixing between the Si-V orbital states causes spin decoherence. At very low temperatures below 100 millikelvin, spin coherence for the Si-V center improves significantly.[8] It is possible to use the 29Si nuclear spin and the electron spin of the Si-V as qubits for quantum information applications.[9][10][11]

Comparison to Nitrogen-Vacancy Center (N-V)

[edit]

The N-V center is a similar defect in diamond with more historical significance. Research on the N-V center dates to the 1950s,[12] but the negative SiV- center was discovered in 1980[13] and the neutral SiV0 center was first seen in 2011.[14] The two defects have different advantages and drawbacks. At room temperature, the N-V center has much better spin coherence, a wider ZPL, and wider phonon sideband.[2] The sharpness of the Si-V center's ZPL is the main property that has drawn research to it instead of using the more studied N-V center.

Neutral SiV0 Overview

[edit]

The SiV0 center has one fewer electron than the SiV-, giving it a neutral charge and different properties. The newer SiV0 center has a spin-1 system[15] with electron spin resonance[14] that gives it a spin coherence superior to the SiV- center.[16] At room temperature, its ZPL lies in the infrared spectrum at 946 nm with an excellent Debye-Waller factor of 0.9,[15] as compared to the red ZPL peak of the SiV- at 738 nm. However, stabilizing SiV0 is more of a challenge, with high precision (1-3 ppm) needed in controlling its boron concentration.[16]

Synthesis

[edit]

Ion Implantation

[edit]

Ion implantation has been used to synthesize Si-V centers in nanodiamonds.[17][18][19] Si ions are implanted into the NDs at specific depths and implantation energies before being annealed.[17][18] After the ion implantation, additional thermal treatments may be applied to repair structural defects and activate impurities. Unlike the ion implantation used to produce N-V centers, Si-V complexes can withstand higher temperature thermal treatments without dissociation risk.[20] In practice, Si-V centers have been synthesized using multiple systems, with differing optical properties such as the widths of resultant ZPLs.[17][18]

Chemical Vapor Deposition

[edit]

Chemical vapor deposition (CVD) is used to synthesize Si-V centers via a similar process to that used to produce N-V centers [20].. In the case of Si-V centers, there are two main types of CVD used. First, when a solid containing Silicon is etched with hydrogen, and SiHx radicals dope the diamond lattice.[21] Second, a silicon containing plasma is created containing SiH3 which functions as the dopant.[22] Si-V centers have been synthesized via tetramethylsilane (TMS) gas as a doping source,[23][22] and in the hydrogen plasma example chemicals such as H2/CH4/CO2 and H2/CH4/N2 have been used to grow the diamonds on Si substrates.[24]

Applications

[edit]

Si-V centers' special properties make them preferred to N-V centers in some specific applications.[20] Si-V centers can be used in temperature sensing,[19][25] photoelectric detectors,[26] and biochemical visualization [27][28] amongst others.

Nanoscale Thermometer

[edit]

Because Si-V centers have such a sharp ZPL, they are used in temperature probes that measure the change in ZPL peaks. These temperature probes have achieved sub-Kelvin precision in less than a second, and do not need individual calibration. Due to the non-invasive nature of these luminescent thermometers, they lend themselves well to biological applications.[25] For example, Si-V nano-scale thermometers have been used for thermosensing within live cells.[28]

Though there is little research favoring Si-V centers over N-V centers in photoelectric detectors, Si-V centers still exhibit a greater response and faster cutoff time compared to undoped detectors. This technology is expected to have applications in many fields including quantum information processing and bio-marking. [26]

Confocal microscopes utilizing Si-V centers have been used to visualize cells in a non-invasive way.[28] Additionally, nano diamond vacancy centers like Si-V centers can detect chemical reactions within cells and function as long-term biological markers.[27]

Due to the poor spin coherence of the negative SiV- center, research interest in the neutral SiV0 center is growing. Spin coherence of 1 second has been achieved for SiV0,[16] giving it potential as a material to be used in quantum networks. SiV- centers can also be used in quantum network applications, with spin memory long enough for entanglement up to 500 kilometers.[8] This is due to improved spin coherence at temperatures below 100 millikelvin.[8]

References

[edit]
  1. ^ Liu, Yan; Chen, Gengxu; Rong, Youying; McGuinness, Liam Paul; Jelezko, Fedor; Tamura, Syuto; Tanii, Takashi; Teraji, Tokuyuki; Onoda, Shinobu; Ohshima, Takeshi; Isoya, Junichi; Shinada, Takahiro; Wu, E; Zeng, Heping (2015). "Fluorescence Polarization Switching from a Single Silicon Vacancy Colour Centre in Diamond". Scientific Reports. 5: 12244. Bibcode:2015NatSR...512244L. doi:10.1038/srep12244. PMC 4511871. PMID 26202940.
  2. ^ a b Becker, Jonas Nils; Neu, Elke (2020-01-01), Nebel, Christoph E.; Aharonovich, Igor; Mizuochi, Norikazu; Hatano, Mutsuko (eds.), "Chapter Seven - The silicon vacancy center in diamond", Semiconductors and Semimetals, Diamond for Quantum Applications Part 1, vol. 103, Elsevier, pp. 201–235, doi:10.1016/bs.semsem.2020.04.001, retrieved 2024-11-07
  3. ^ Jahnke, K. D.; Sipahigil, A.; Binder, J. M.; Doherty, M. W.; Metsch, M.; Rogers, L. J.; Manson, N. B.; Lukin, M. D.; Jelezko, F. (April 2015). "Electron–phonon processes of the silicon-vacancy centre in diamond". New Journal of Physics. 17 (4): 043011. arXiv:1411.2871. Bibcode:2015NJPh...17d3011J. doi:10.1088/1367-2630/17/4/043011. S2CID 17590913.
  4. ^ Feng, T.; Schwartz, B. D. (1993). "Characteristics and origin of the 1.681 eV luminescence centre in chemical-vapor-deposited diamond films". Journal of Applied Physics. 73 (3): 1415. Bibcode:1993JAP....73.1415F. doi:10.1063/1.353239.
  5. ^ Dietrich, A.; Jahnke, K. D.; Binder, J. M.; Teraji, T.; Isoya, J.; Rogers, L. J.; Jelezko, F. (2014). "Isotopically varying spectral features of silicon-vacancy in diamond". New Journal of Physics. 16 (11): 113019. arXiv:1407.7137. doi:10.1088/1367-2630/16/11/113019. S2CID 119303095.
  6. ^ Aharonovich, I.; Castelletto, S.; Simpson, D. A.; Su, C. -H.; Greentree, A. D.; Prawer, S. (2011). "Diamond-based single-photon emitters". Reports on Progress in Physics. 74 (7): 076501. Bibcode:2011RPPh...74g6501A. doi:10.1088/0034-4885/74/7/076501. S2CID 123302785.
  7. ^ Rogers, L. J.; Jahnke, K. D.; Teraji, T.; Marseglia, L.; Müller, C.; Naydenov, B.; Schauffert, H.; Kranz, C.; Isoya, J.; McGuinness, L. P.; Jelezko, F. (2014). "Multiple intrinsically identical single-photon emitters in the solid state". Nature Communications. 5: 4739. arXiv:1310.3804. Bibcode:2014NatCo...5.4739R. doi:10.1038/ncomms5739. PMID 25162729. S2CID 19581092.
  8. ^ a b c Nguyen, C. T.; Sukachev, D. D.; Bhaskar, M. K.; Machielse, B.; Levonian, D. S.; Knall, E. N.; Stroganov, P.; Chia, C.; Burek, M. J. (2019). "An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond". Physical Review B. 100 (16). arXiv:1907.13200. doi:10.1103/PhysRevB.100.165428.
  9. ^ Rogers, L. J.; Jahnke, K. D.; Metsch, M. H.; Sipahigil, A.; Binder, J. M.; Teraji, T.; Sumiya, H.; Isoya, J.; Lukin, M. D.; Hemmer, P.; Jelezko, F. (2014). "All-Optical Initialization, Readout, and Coherent Preparation of Single Silicon-Vacancy Spins in Diamond". Physical Review Letters. 113 (26): 263602. arXiv:1410.1355. Bibcode:2014PhRvL.113z3602R. doi:10.1103/PhysRevLett.113.263602. PMID 25615330. S2CID 7492043.
  10. ^ Pingault, B.; Becker, J. N.; Schulte, C. H. H.; Arend, C.; Hepp, C.; Godde, T.; Tartakovskii, A. I.; Markham, M.; Becher, C.; Atatüre, M. (2014). "All-Optical Formation of Coherent Dark States of Silicon-Vacancy Spins in Diamond". Physical Review Letters. 113 (26): 263601. arXiv:1409.4069. Bibcode:2014PhRvL.113z3601P. doi:10.1103/PhysRevLett.113.263601. PMID 25615329. S2CID 15711479.
  11. ^ Stas, P.-J.; Huan, Y. Q.; Machielse, B.; Knall, E. N.; Suleymanzade, A.; Pingault, B.; Sutula, M.; Ding, S. W.; Knaut, C. N.; Assumpcao, D. R.; Wei, Y.-C.; Bhaskar, M. K.; Riedinger, R.; Sukachev, D. D.; Park, H.; Lončar, M.; Levonian, D.; Lukin, M. D. (2022). "Robust multi-qubit quantum network node with integrated error detection". Science. 378 (6619): 557–560. arXiv:2207.13128. Bibcode:2022Sci...378..557S. doi:10.1126/science.add9771. PMID 36378964. S2CID 251105100.
  12. ^ Kaiser, W.; Bond, W. L. (1959). "Nitrogen, A Major Impurity in Common Type I Diamond". Physical Review. 115 (4): 857–863. doi:10.1103/PhysRev.115.857.
  13. ^ Vavilov, V. S.; Gippius, A. (1980). "Investigation of the cathodoluminescence of epitaxial diamond films". Soviet Physics Semiconductors. 14 (9): 1078–1079.
  14. ^ a b D'Haenens-Johansson, U. F. S.; Edmonds, A. M.; Green, B. L.; Newton, M. E.; Davies, G.; Martineau, P. M.; Khan, R. U. A.; Twitchen, D. J. (2011-12-21). "Optical properties of the neutral silicon split-vacancy center in diamond". Physical Review B. 84 (24). doi:10.1103/physrevb.84.245208. ISSN 1098-0121.
  15. ^ a b Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D’Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E. (2017). "Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes". Physical Review Letters. 119 (9). arXiv:1705.10205. doi:10.1103/PhysRevLett.119.096402.
  16. ^ a b c Rose, Brendon C.; Huang, Ding; Zhang, Zi-Huai; Stevenson, Paul; Tyryshkin, Alexei M.; Sangtawesin, Sorawis; Srinivasan, Srikanth; Loudin, Lorne; Markham, Matthew L.; Edmonds, Andrew M.; Twitchen, Daniel J.; Lyon, Stephen A.; de Leon, Nathalie P. (2018-07-06). "Observation of an environmentally insensitive solid-state spin defect in diamond". Science. 361 (6397): 60–63. arXiv:1706.01555. doi:10.1126/science.aao0290.
  17. ^ a b c Takashima, Hideaki; Fukuda, Atsushi; Shimazaki, Konosuke; Iwabata, Yusuke; Kawaguchi, Hiroki; Schell, Andreas W.; Tashima, Toshiyuki; Abe, Hiroshi; Onoda, Shinobu; Ohshima, Takeshi; Takeuchi, Shigeki (2021). "Creation of silicon vacancy color centers with a narrow emission line in nanodiamonds by ion implantation". Optical Materials Express. 11 (7): 1978–1988. Bibcode:2021OMExp..11.1978T. doi:10.1364/OME.424786 – via Optica Publishing Group.
  18. ^ a b c Kim, Hyeongkwon; Kim, Hyeyeon; Lee, Jaeyong; Lim, Weon Cheol; Eliades, John A.; Kim, Joonkon; Song, Jonghan; Suk, Jaekwon (2018-09-01). "Fabrication of Silicon-Vacancy Color Centers in Nanodiamonds by using Si-Ion Implantation". Journal of the Korean Physical Society. 73 (5): 661–666. Bibcode:2018JKPS...73..661K. doi:10.3938/jkps.73.661. ISSN 1976-8524.
  19. ^ a b Lagomarsino, S.; Flatae, A. M.; Kambalathmana, H.; Sledz, F.; Hunold, L.; Soltani, N.; Reuschel, P.; Sciortino, S.; Gelli, N.; Massi, M.; Czelusniak, C.; Giuntini, L.; Agio, M. (2021-01-14). "Creation of Silicon-Vacancy Color Centers in Diamond by Ion Implantation". Frontiers in Physics. 8: 626. Bibcode:2021FrP.....8..626L. doi:10.3389/fphy.2020.601362. ISSN 2296-424X.
  20. ^ a b c Ekimov, E A; Kondrin, M V (2017). "Vacancy-impurity centers in diamond: prospects for synthesis and applications". Physics - Uspekhi. 60 (6): 539–558. Bibcode:2017PhyU...60..539E. doi:10.3367/UFNe.2016.11.037959 – via ResearchGate.
  21. ^ Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; Ishiwata, Hitoshi; Dahl, Jeremy; Carlson, Robert M. K.; Yan, Hao; Schreiner, Peter R.; Vučković, Jelena; Shen, Zhi-Xun; Melosh, Nicholas; Chu, Steven (2017-03-08). "Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth". Nano Letters. 17 (3): 1489–1495. Bibcode:2017NanoL..17.1489T. doi:10.1021/acs.nanolett.6b04543. ISSN 1530-6984. OSTI 1353196. PMID 28182433.
  22. ^ a b Yang, Bing; Li, Junhao; Guo, Liang; Huang, Nan; Liu, Lusheng; Zhai, Zhaofeng; Long, Wenjing; Jiang, Xin (2018-02-20). "Fabrication of silicon-vacancy color centers in diamond films: tetramethylsilane as a new dopant source". CrystEngComm. 20 (8): 1158–1167. doi:10.1039/C7CE02181J. ISSN 1466-8033.
  23. ^ Yang, Bing; Li, Haining; Yu, Biao; Lu, Jiaqi; Huang, Nan; Liu, Lusheng; Jiang, Xin (January 2021). "Bright silicon vacancy centers in diamond/SiC composite films synthesized by a MPCVD method". Carbon. 171: 455–463. Bibcode:2021Carbo.171..455Y. doi:10.1016/j.carbon.2020.09.032.
  24. ^ Potocký, Štěpán; Ižák, Tibor; Varga, Marian; Kromka, Alexander (2015). "Influence of gas chemistry on Si-V color centers in diamond films". Physica Status Solidi (B). 252 (11): 2580–2584. Bibcode:2015PSSBR.252.2580P. doi:10.1002/pssb.201552222. ISSN 1521-3951.
  25. ^ a b Nguyen, Christian T.; Evans, Ruffin E.; Sipahigil, Alp; Bhaskar, Mihir K.; Sukachev, Denis D.; Agafonov, Viatcheslav N.; Davydov, Valery A.; Kulikova, Liudmila F.; Jelezko, Fedor; Lukin, Mikhail D. (2018-05-14). "All-optical nanoscale thermometry with silicon-vacancy centers in diamond". Applied Physics Letters. 112 (20). arXiv:1708.05419. Bibcode:2018ApPhL.112t3102N. doi:10.1063/1.5029904. ISSN 0003-6951.
  26. ^ a b Guo, Xiaokun; Yang, Bing; Zhang, Xinglai; Lu, Jiaqi; Huang, Ming; Huang, Nan; Liu, Lusheng; Jiang, Xin (2024). "Diamond photo-electric detectors with introduced silicon-vacancy color centers". Journal of Materials Chemistry C. 12 (38): 15483–15490. doi:10.1039/D4TC02335H. ISSN 2050-7526.
  27. ^ a b Mzyk, Aldona; Ong, Yori; Ortiz Moreno, Ari R.; Padamati, Sandeep K.; Zhang, Yue; Reyes-San-Martin, Claudia A.; Schirhagl, Romana (2022-01-11). "Diamond Color Centers in Diamonds for Chemical and Biochemical Analysis and Visualization". Analytical Chemistry. 94 (1): 225–249. doi:10.1021/acs.analchem.1c04536. ISSN 0003-2700. PMID 34841868.
  28. ^ a b c Liu, Weina; Liu, Yan; Agafonov, Viatcheslav N.; Qi, Haoyuan; Koynov, Kaloian; Davydov, Valery A.; Uzbekov, Rustem; Kaiser, Ute; Lasser, Theo (2021-02-03), Silicon-Vacancy Nanodiamonds as High Performance Near-Infrared Emitters for Live-Cell Dual-Color Imaging, doi:10.26434/chemrxiv.13625498.v2, retrieved 2024-12-06