Jump to content

Meyer–Schuster rearrangement

From Wikipedia, the free encyclopedia
(Redirected from Rupe reaction)
Meyer–Schuster rearrangement
Named after Kurt Heinrich Meyer
Kurt Schuster
Reaction type Rearrangement reaction
Identifiers
RSC ontology ID RXNO:0000476

The Meyer–Schuster rearrangement is the chemical reaction described as an acid-catalyzed rearrangement of secondary and tertiary propargyl alcohols to α,β-unsaturated ketones if the alkyne group is internal and α,β-unsaturated aldehydes if the alkyne group is terminal.[1][2][3][4]

The Meyer-Schuster rearrangement
The Meyer-Schuster rearrangement

Mechanism

[edit]
Meyer-Schuster Rearrangement
Meyer-Schuster Rearrangement

The reaction proceeds by three major steps: (1) the rapid protonation of oxygen, (2) the slow, rate-determining step comprising the 1,3-shift of the protonated hydroxy group, and (3) the keto-enol tautomerism followed by rapid deprotonation.[5] Formation of the unsaturated carbonyl compound is irreversible.[6] Solvent is important and solvent caging is proposed to stabilize the transition state.[7]

Rupe rearrangement

[edit]

The reaction of tertiary alcohols containing an α-acetylenic group does not produce the expected aldehydes, but rather α,β-unsaturated methyl ketones via an enyne intermediate.[8][9] This alternate reaction is called the Rupe reaction, and competes with the Meyer–Schuster rearrangement in the case of tertiary alcohols.

The Rupe rearrangement
The Rupe rearrangement
Mechanism of the Rupe rearrangement
Mechanism of the Rupe rearrangement

Use of catalysts

[edit]

The traditional Meyer–Schuster rearrangement is induced by strong acids, which introduces competition with the Rupe reaction if the alcohol is tertiary.[1] Milder conditions are possible with transition metal-based and Lewis acid catalysts (for example, Ru-[10] and Ag-based[11] catalysts). Microwave-radiation with InCl catalyst to give excellent yields with short reaction times and good stereoselectivity.[12]

Cadierno et al.'s microwave-assisted catalysis
Cadierno et al.'s microwave-assisted catalysis

Use in organic synthesis

[edit]

The Meyer–Schuster rearrangement has been used in a variety of applications, from the conversion of ω-alkynyl-ω-carbinol lactams into enamides using catalytic PTSA[13] to the synthesis of α,β-unsaturated thioesters from γ-sulfur substituted propargyl alcohols[14] to the rearrangement of 3-alkynyl-3-hydroxyl-1H-isoindoles in mildly acidic conditions to give the α,β-unsaturated carbonyl compounds.[15] One of the most interesting applications, however, is the synthesis of a part of paclitaxel in a diastereomerically-selective way that leads only to the E-alkene.[16]

Part of the synthesis of taxol using the Meyer-Schuster rearrangement
Part of the synthesis of taxol using the Meyer-Schuster rearrangement

The step shown above had a 70% yield (91% when the byproduct was converted to the Meyer-Schuster product in another step). The authors used the Meyer–Schuster rearrangement because they wanted to convert a hindered ketone to an alkene without destroying the rest of their molecule.

History

[edit]

The reaction is named after Kurt Meyer and Kurt Schuster.[17] Reviews have been published by Swaminathan and Narayan,

References

[edit]
  1. ^ a b Swaminathan, S.; Narayan, K. V. "The Rupe and Meyer-Schuster Rearrangements" Chem. Rev. 1971, 71, 429–438. (Review)
  2. ^ Vartanyan, S. A.; Banbanyan, S. O. Russ. Chem. Rev. 1967, 36, 670. (Review)
  3. ^ Engel, D.A.; Dudley, G.B. Organic and Biomolecular Chemistry 2009, 7, 4149–4158. (Review)
  4. ^ Li, J.J. In Meyer-Schuster rearrangement; Name Reactions: A Collection of Detailed Reaction Mechanisms; Springer: Berlin, 2006; pp 380–381.(doi:10.1007/978-3-642-01053-8_159)
  5. ^ Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 3403–3408. (doi:10.1021/jo00441a017)
  6. ^ Andres, J.; Cardenas, R.; Silla, E.; Tapia, O. J. Am. Chem. Soc. 1988, 110, 666–674. (doi:10.1021/ja00211a002)
  7. ^ Tapia, O.; Lluch, J.M.; Cardena, R.; Andres, J. J. Am. Chem. Soc. 1989, 111, 829–835. (doi:10.1021/ja00185a007)
  8. ^ Rupe, H.; Kambli, E. Helv. Chim. Acta 1926, 9, 672. (doi:10.1002/hlca.19260090185)
  9. ^ Li, J.J. In Rupe rearrangement; Name Reactions: A Collection of Detailed Reaction Mechanisms; Springer: Berlin, 2006; pp 513–514.(doi:10.1007/978-3-642-01053-8_224)
  10. ^ Cadierno, V.; Crochet, P.; Gimeno, J. Synlett 2008, 1105–1124. (doi:10.1055/s-2008-1072593)
  11. ^ Sugawara, Y.; Yamada, W.; Yoshida, S.; Ikeno, T.; Yamada, T. J. Am. Chem. Soc. 2007, 129, 12902-12903. (doi:10.1021/ja074350y)
  12. ^ Cadierno, V.; Francos, J.; Gimeno, J. Tetrahedron Lett. 2009, 50, 4773–4776.(doi:10.1016/j.tetlet.2009.06.040)
  13. ^ Chihab-Eddine, A.; Daich, A.; Jilale, A.; Decroix, B. J. Heterocycl. Chem. 2000, 37, 1543–1548.(doi:10.1002/jhet.5570370622)
  14. ^ Yoshimatsu, M.; Naito, M.; Kawahigashi, M.; Shimizu, H.; Kataoka, T. J. Org. Chem. 1995, 60, 4798–4802.(doi:10.1021/jo00120a024)
  15. ^ Omar, E.A.; Tu, C.; Wigal, C.T.; Braun, L.L. J. Heterocycl. Chem. 1992, 29, 947–951.(doi:10.1002/jhet.5570290445)
  16. ^ Crich, D.; Natarajan, S.; Crich, J.Z. Tetrahedron 1997, 53, 7139–7158.(doi:10.1016/S0040-4020(97)00411-0)
  17. ^ Meyer, Kurt H.; Schuster, Kurt (1922). "Umlagerung tertiärer Äthinyl-carbinole in ungesättigte Ketone". Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 55 (4): 819–823. doi:10.1002/cber.19220550403.)