Jump to content

First pass effect

From Wikipedia, the free encyclopedia
(Redirected from Presystemic metabolism)
Illustration showing the hepatic portal vein system

The first pass effect (also known as first-pass metabolism or presystemic metabolism) is a phenomenon of drug metabolism at a specific location in the body which leads to a reduction in the concentration of the active drug before it reaches the site of action or systemic circulation.[1][2] The effect is most associated with orally administered medications, but some drugs still undergo first-pass metabolism even when delivered via an alternate route (e.g., IV, IM, etc.).[3] During this metabolism, drug is lost during the process of absorption which is generally related to the liver and gut wall. The liver is the major site of first pass effect; however, it can also occur in the lungs, vasculature or other metabolically active tissues in the body. Notable drugs that experience a significant first pass effect are buprenorphine, chlorpromazine, cimetidine, diazepam, ethanol (drinking alcohol), imipramine, insulin, lidocaine, midazolam, morphine, pethidine, propranolol, and tetrahydrocannabinol (THC). First-pass metabolism is not to be confused with Phase I metabolism, which is a separate process.

First-pass metabolism may occur in the liver (for propranolol, lidocaine, clomethiazole, and nitroglycerin) or in the gut (for benzylpenicillin and insulin).[4]

After a drug is swallowed, it is absorbed by the digestive system and enters the hepatic portal system. It is carried through the portal vein into the liver before it reaches the rest of the body. The liver metabolizes many drugs, sometimes to such an extent that only a small amount of active drug emerges from the liver to the rest of the circulatory system. This first pass through the liver thus may greatly reduce the bioavailability of the drug.

An example of a drug where first-pass metabolism is a complication and disadvantage is in the antiviral drug remdesivir. Remdesivir cannot be administered orally because the entire dose would be trapped in the liver with little achieving systemic circulation or reaching target organs and cells (for example, cells infected with SARS-CoV-2).[5][6] For this reason, remdesivir is administered by IV infusion, bypassing the portal vein. However, significant hepatic extraction still occurs because of second pass metabolism, whereby a fraction of venous blood travels through the hepatic portal vein and hepatocytes.

The four primary systems that affect the first pass effect of a drug are the enzymes of the gastrointestinal lumen, gut wall enzymes, bacterial enzymes, and hepatic enzymes.

In drug design, drug candidates may have good druglikeness but fail on first-pass metabolism because it is biochemically selective.[ambiguous]

Alternative routes of administration, such as insufflation, suppository, intravenous, intramuscular, inhalational aerosol, transdermal, or sublingual, avoid the first pass effect because they allow drugs to be absorbed directly into the systemic circulation.

Drugs with high first pass effect typically have a considerably higher oral dose than sublingual or parenteral dose. There is marked individual variation in the oral dose due to differences in the extent of first-pass metabolism, frequently among several other factors. Oral bioavailability of many vulnerable drugs appears to be increased in patients with compromised liver function. Bioavailability is also increased if another drug competing for first-pass metabolism enzymes is given concurrently (e.g., propranolol and chlorpromazine).

See also

[edit]

References

[edit]
  1. ^ Rowland, Malcolm (January 1972). "Influence of route of administration on drug availability". Journal of Pharmaceutical Sciences. 61 (1): 70–74. doi:10.1002/jps.2600610111. ISSN 0022-3549. PMID 5019220.
  2. ^ Pond, Susan M.; Tozer, Thomas N. (January 1984). "First-Pass Elimination". Clinical Pharmacokinetics. 9 (1): 1–25. doi:10.2165/00003088-198409010-00001. ISSN 0312-5963. PMID 6362950. S2CID 28006040.
  3. ^ Carlin, Michelle G. (2023-01-01), "Pharmacology and Mechanism of Action of Drugs", in Houck, Max M. (ed.), Encyclopedia of Forensic Sciences, Third Edition (Third Edition), Oxford: Elsevier, pp. 144–154, doi:10.1016/b978-0-12-823677-2.00086-6, ISBN 978-0-12-823678-9, retrieved 2024-01-17
  4. ^ Bath-Hextall, Fiona (October 16, 2013). "Understanding First Pass Metabolism". University of Nottingham. Archived from the original on July 28, 2021. Retrieved October 26, 2017.
  5. ^ Yan, Victoria C.; Muller, Florian L. (2020). "Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment". ACS Medicinal Chemistry Letters. 11 (7): 1361–1366. doi:10.1021/acsmedchemlett.0c00316. PMC 7315846. PMID 32665809.
  6. ^ "FACT SHEET FOR HEALTHCARE PROVIDERS EMERGENCY USE AUTHORIZATION (EUA) OF VEKLURY® (remdesivir) FOR THE TREATMENT OF CORONAVIRUS DISEASE 2019 (COVID-19) IN PEDIATRIC PATIENTS WEIGHING 3.5 KG TO LESS THAN 40 KG OR PEDIATRIC PATIENTS LESS THAN 12 YEARS OF AGE WEIGHING AT LEAST 3.5 KG, WITH POSITIVE RESULTS OF DIRECT SARS-CoV-2 VIRAL TESTING WHO ARE: HOSPITALIZED, OR NOT HOSPITALIZED AND HAVE MILD-TO-MODERATE COVID-19, AND ARE AT HIGH RISK FOR PROGRESSION TO SEVERE COVID-19, INCLUDING HOSPITALIZATION OR DEATH". Archived from the original on 12 May 2020. Retrieved 4 July 2024.
[edit]