Jump to content

Praseodymium(III) fluoride

From Wikipedia, the free encyclopedia
(Redirected from Praseodymium trifluoride)
Praseodymium(III) fluoride
Names
Other names
Praseodymium trifluoride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.853 Edit this at Wikidata
EC Number
  • 237-254-9
UNII
  • InChI=1S/3FH.Pr/h3*1H;/q;;;+3/p-3
    Key: BOTHRHRVFIZTGG-UHFFFAOYSA-K
  • [F-].[F-].[F-].[Pr+3]
Properties
PrF3
Appearance green crystalline solid
Density 6.267 g·cm−3[1]
Melting point 1370 °C[2]
Hazards
GHS labelling:
GHS06: ToxicGHS07: Exclamation mark
Danger
H301, H311, H315, H319, H331, H335, H413
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Praseodymium(III) fluoride is an inorganic compound with the formula PrF3, being the most stable fluoride of praseodymium.

Preparation

[edit]

The reaction between praseodymium(III) nitrate and sodium fluoride will obtain praseodymium(III) fluoride as a green crystalline solid:[3]

Pr(NO3)3 + 3 NaF → 3 NaNO3 + PrF3

There are also literature reports on the reaction between chlorine trifluoride and various oxides of praseodymium (Pr2O3, Pr6O11 and PrO2), where praseodymium(III) fluoride is the only product. The reaction between bromine trifluoride and praseodymium oxide left in the air for a period of time also produces praseodymium(III) fluoride, but the reaction is incomplete; the reaction between praseodymium(III) oxalate hydrate and bromine trifluoride can obtain praseodymium(III) fluoride, and carbon is also produced from this reaction.[4] Praseodymium(III) fluoride can also be obtained by reacting praseodymium oxide and sulfur hexafluoride at 584 °C.[5]

Properties

[edit]

Physical

[edit]

Praseodymium(III) fluoride forms pale green crystals of trigonal system[6] (or hexagonal system[7]), space group P 3c1,[6] (or P 6/mcm[7]), cell parameters a = 0.7078 nm, c = 0.7239 nm, Z = 6, structure like cerium(III) fluoride (CeF3).

Chemical

[edit]

Praseodymium(III) fluoride is a green, odourless, hygroscopic solid that is insoluble in water.[8]

Uses

[edit]

Praseodymium(III) fluoride is used as a doping material for laser crystals.[9]

See also

[edit]

References

[edit]
  1. ^ E. A. Krivandina, Z. I. Zhmurova, B. P. Sobolev, T. M. Glushkova, D. F. Kiselev, M. M. Firsova, A. P. Shtyrkova (October 2006). "Growth of R 1 − y Sr y F3 − y crystals with rare earth elements of the cerium subgroup (R = La, Ce, Pr, or Nd; 0 ≤ y ≤ 0.16) and the dependence of their density and optical characteristics on composition". Crystallography Reports. 51 (5): 895–901. doi:10.1134/S106377450605021X. ISSN 1063-7745. S2CID 189794019.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  2. ^ H. von Wartenberg. The melting points of neodymium and praseodymium fluorides. Naturwissenschaften, 1941. 29: 771. ISSN 0028-1042.
  3. ^ Lin Ma, Wei-Xiang Chen, Yi-Fan Zheng, Jie Zhao, Zhude Xu (May 2007). "Microwave-assisted hydrothermal synthesis and characterizations of PrF3 hollow nanoparticles". Materials Letters. 61 (13): 2765–2768. doi:10.1016/j.matlet.2006.04.124. Retrieved 2019-03-26.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  4. ^ Popov, Alexander I.; Glockler, George (Mar 1952). "Observations on the Fluorination of Praseodymium and Neodymium Compounds". Journal of the American Chemical Society. 74 (5): 1357–1358. doi:10.1021/ja01125a521. ISSN 0002-7863.
  5. ^ OPALOVSKII, A. A.; LOBKOV, E. U.; ERENBURG, B. G.; ZAKHAR'EV, YU. V.; SHINGAREV, V. G. (1973-01-16). "ChemInform Abstract: RK. VON SF6 MIT SELTENERDMETALLOXIDEN". Chemischer Informationsdienst. 4 (3). doi:10.1002/chin.197303045. ISSN 0009-2975.
  6. ^ a b Химическая энциклопедия. Vol. 4. М.: Советская энциклопедия. 1995. ISBN 5-85270-092-4. {{cite book}}: Unknown parameter |agency= ignored (help)
  7. ^ a b Справочник химика. Vol. 1 (2-е изд., испр ed.). М.-Л.: Химия. 1966. {{cite book}}: Unknown parameter |agency= ignored (help)
  8. ^ Praseodymium(III) fluoride at AlfaAesar, accessed on 2023-12-22 (PDF) (JavaScript required).[dead link]
  9. ^ Shalibeik, Hotan (2007). Rare-earth-doped fiber lasers and amplifiers (1. Aufl ed.). Göttingen: Cuvillier. ISBN 978-3-86727-467-8.