Jump to content

Peters polynomials

From Wikipedia, the free encyclopedia
(Redirected from Peters polynomial)

In mathematics, the Peters polynomials sn(x) are polynomials studied by Peters (1956, 1956b) given by the generating function

(Roman 1984, 4.4.6), (Boas & Buck 1958, p.37). They are a generalization of the Boole polynomials.

See also

[edit]

References

[edit]
  • Boas, Ralph P.; Buck, R. Creighton (1958), Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge., vol. 19, Berlin, New York: Springer-Verlag, ISBN 978-0-387-03123-1, MR 0094466
  • Peters, George Owen (1956), Schafer, Richard D. (ed.), "Boole polynomials of higher and negative orders", Bulletin of the A.M.S., 62 (1): 7, doi:10.1090/S0002-9904-1956-09972-0
  • Peters, George Owen (1956b), Schafer, Richard D. (ed.), "Boole polynomials and numbers of the second kind", Bulletin of the A.M.S., 62: 387, doi:10.1090/S0002-9904-1956-10046-3
  • Roman, Steven (1984), The umbral calculus, Pure and Applied Mathematics, vol. 111, London: Academic Press Inc. [Harcourt Brace Jovanovich Publishers], ISBN 978-0-12-594380-2, MR 0741185 Reprinted by Dover, 2005