Nitrogen cycle: Difference between revisions
ClueBot NG (talk | contribs) m Reverting possible vandalism by Fogolize to version by Onco p53. False positive? Report it. Thanks, ClueBot NG. (174411) (Bot) |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Nitrogen Cycle.svg|thumb|320px|Schematic representation of the flow of nitrogen through the environment. The importance of bacteria in the cycle is immediately recognized as being a key element in the cycle, providing different forms of nitrogen compounds assimilable by higher organisms.]] |
[[Image:Nitrogen Cycle.svg|thumb|320px|Schematic representation of the flow of nitrogen through the environment. The importance of bacteria in the cycle is immediately recognized as being a key element in the cycle, providing different forms of nitrogen compounds assimilable by higher organisms.]]HEYYYYY DEVANTE STOP READIND THIS AND PLAY THPS FAIR |
||
The '''nitrogen cycle''' is the process by which [[nitrogen]] is converted between its various chemical forms. This transformation can be carried out via both biological and non-biological processes. Important processes in the nitrogen cycle include [[nitrogen fixation|fixation]], [[mineralization]], [[nitrification]], and [[denitrification]]. The majority of [[Earth's atmosphere]] (approximately 78%) is [[nitrogen]],<ref name=CarrollSalt2004p93>{{Cite book |
The '''nitrogen cycle''' is the process by which [[nitrogen]] is converted between its various chemical forms. This transformation can be carried out via both biological and non-biological processes. Important processes in the nitrogen cycle include [[nitrogen fixation|fixation]], [[mineralization]], [[nitrification]], and [[denitrification]]. The majority of [[Earth's atmosphere]] (approximately 78%) is [[nitrogen]],<ref name=CarrollSalt2004p93>{{Cite book |
Revision as of 19:57, 9 January 2011
HEYYYYY DEVANTE STOP READIND THIS AND PLAY THPS FAIR
The nitrogen cycle is the process by which nitrogen is converted between its various chemical forms. This transformation can be carried out via both biological and non-biological processes. Important processes in the nitrogen cycle include fixation, mineralization, nitrification, and denitrification. The majority of Earth's atmosphere (approximately 78%) is nitrogen,[1] making it the largest pool of nitrogen. However, atmospheric nitrogen is unavailable for biological use, leading to a scarcity of usable nitrogen in many types of ecosystems. The nitrogen cycle is of particular interest to ecologists because nitrogen availability can affect the rate of key ecosystem processes, including primary production and decomposition. Human activities such as fossil fuel combustion, use of artificial nitrogen fertilizers, and release of nitrogen in wastewater have dramatically altered the global nitrogen cycle.
Ecological function
Nitrogen is essential for many processes; it is crucial for any life on Earth. It is in all amino acids, is incorporated into proteins, and is present in the bases that make up nucleic acids, such as DNA and RNA. In plants, much of the nitrogen is used in chlorophyll molecules, which are essential for photosynthesis and further growth.[2] Although earth’s atmosphere is an abundant source of nitrogen, most is relatively unusable by plants.[3] Chemical processing, or natural fixation (through processes such as bacterial conversion—see rhizobium), are necessary to convert gaseous nitrogen into forms usable by living organisms. This makes nitrogen a crucial part of food production. The abundance or scarcity of this "fixed" form of nitrogen, (also known as reactive nitrogen), dictates how much food can be grown on a piece of land.
The processes of the nitrogen cycle
Nitrogen is present in the environment in a wide variety of chemical forms including organic nitrogen, ammonium (NH4+), nitrate (NO3-), and nitrogen gas (N2). The processes of the nitrogen cycle transform nitrogen from one chemical form to another. Many of the processes are carried out by microbes either to produce energy or to accumulate nitrogen in the form needed for growth. The diagram above shows how these processes fit together to form the nitrogen cycle.
Nitrogen fixation
Atmospheric nitrogen must be processed, or "fixed" (see page on nitrogen fixation), to be used by plants. Some fixation occurs in lightning strikes, but most fixation is done by free-living or symbiotic bacteria. These bacteria have the nitrogenase enzyme that combines gaseous nitrogen with hydrogen to produce ammonia, which is then further converted by the bacteria to make their own organic compounds. Some nitrogen fixing bacteria, such as Rhizobium, live in the root nodules of legumes (such as peas or beans). Here they form a mutualistic relationship with the plant, producing ammonia in exchange for carbohydrates. Nutrient-poor soils can be planted with legumes to enrich them with nitrogen. A few other plants can form such symbioses. Today, about 30% of the total fixed nitrogen is manufactured in ammonia chemical plants.[4]
Conversion of N2
The conversion of nitrogen (N2) from the atmosphere into a form readily available to plants and hence to animals and humans is an important step in the nitrogen cycle, which distributes the supply of this essential nutrient. There are four ways to convert N2 (atmospheric nitrogen gas) into more chemically reactive forms:[2]
- Biological fixation: some symbiotic bacteria (most often associated with leguminous plants) and some free-living bacteria are able to fix nitrogen as organic nitrogen. An example of mutualistic nitrogen fixing bacteria are the Rhizobium bacteria, which live in legume root nodules. These species are diazotrophs. An example of the free-living bacteria is Azotobacter.
- Industrial N-fixation : Under great pressure, at a temperature of 600 C, and with the use of an iron catalyst, atmospheric nitrogen and hydrogen (usually derived from natural gas or petroleum) can be combined to form ammonia (NH3). In the Haber-Bosch process, N2 is converted together with hydrogen gas (H2) into ammonia (NH3), which is used to make fertilizer and explosives.
- Combustion of fossil fuels : automobile engines and thermal power plants, which release various nitrogen oxides (NOx).
- Other processes : In addition, the formation of NO from N2 and O2 due to photons and especially lightning, can fix nitrogen.
Assimilation
Some plants get nitrogen from the soil, and by absorption of their roots in the form of either nitrate ions or ammonium ions. All nitrogen obtained by animals can be traced back to the eating of plants at some stage of the food chain.
Plants can absorb nitrate or ammonium ions from the soil via their root hairs. If nitrate is absorbed, it is first reduced to nitrite ions and then ammonium ions for incorporation into amino acids, intense nucleic acids, and chlorophyll.[2] In plants that have a mutualistic relationship with rhizobia, some nitrogen is assimilated in the form of ammonium ions directly from the nodules. Animals, fungi, and other heterotrophic organisms absorb nitrogen as amino acids, nucleotides and other small organic molecules.
Ammonification
When a plant dies, an animal dies, or an animal expels waste, the initial form of nitrogen is organic. Bacteria, or in some cases, fungi, convert the organic nitrogen within the remains back into ammonium (NH4+), a process called ammonification or mineralization. Enzymes Involved:
- GS: Gln Synthetase (Cytosolic & PLastid)
- GOGAT: Glu 2-oxoglutarate aminotransferase (Ferredoxin & NADH dependent)
- GDH: Glu Dehydrogenase:
- Minor Role in ammonium assimilation.
- Important in amino acid catabolism.
Nitrification
The conversion of ammonium to nitrate is performed primarily by soil-living bacteria and other nitrifying bacteria. The primary stage of nitrification, the oxidation of ammonium (NH4+) is performed by bacteria such as the Nitrosomonas species, which converts ammonia to nitrites (NO2-). Other bacterial species, such as the Nitrobacter, are responsible for the oxidation of the nitrites into nitrates (NO3-).[2]It is important for the nitrites to be converted to nitrates because accumulated nitrites are toxic to plant life.
Due to their very high solubility, nitrates can enter groundwater. Elevated nitrate in groundwater is a concern for drinking water use because nitrate can interfere with blood-oxygen levels in infants and cause methemoglobinemia or blue-baby syndrome.[5] Where groundwater recharges stream flow, nitrate-enriched groundwater can contribute to eutrophication, a process leading to high algal, especially blue-green algal populations and the death of aquatic life due to excessive demand for oxygen. While not directly toxic to fish life like ammonia, nitrate can have indirect effects on fish if it contributes to this eutrophication. Nitrogen has contributed to severe eutrophication problems in some water bodies. As of 2006, the application of nitrogen fertilizer is being increasingly controlled in Britain and the United States. This is occurring along the same lines as control of phosphorus fertilizer, restriction of which is normally dale considered essential to the recovery of eutrophied waterbodies.
Denitrification
Denitrification is the reduction of nitrates back into the largely inert nitrogen gas (N2), completing the nitrogen cycle. This process is performed by bacterial species such as Pseudomonas and Clostridium in anaerobic conditions.[2] They use the nitrate as an electron acceptor in the place of oxygen during respiration. These facultatively anaerobic bacteria can also live in aerobic conditions.
Anaerobic ammonium oxidation
In this biological process, nitrite and ammonium are converted directly into dinitrogen gas. This process makes up a major proportion of dinitrogen conversion in the oceans.
Human influences on the nitrogen cycle
As a result of extensive cultivation of legumes (particularly soy, alfalfa, and clover), growing use of the Haber-Bosch process in the creation of chemical fertilizers, and pollution emitted by vehicles and industrial plants, human beings have more than doubled the annual transfer of nitrogen into biologically available forms.[5] In addition, humans have significantly contributed to the transfer of nitrogen trace gases from Earth to the atmosphere, and from the land to aquatic systems. Human alterations to the global nitrogen cycle are most intense in developed countries and in Asia, where vehicle emissions and industrial agriculture are highest.[6]
N2O (nitrous oxide) has risen in the atmosphere as a result of agricultural fertilization, biomass burning, cattle and feedlots, and other industrial sources.[7] N2O has deleterious effects in the stratosphere, where it breaks down and acts as a catalyst in the destruction of atmospheric ozone. N2O in the atmosphere is a greenhouse gas, currently the third largest contributor to global warming, after carbon dioxide and methane. While not as abundant in the atmosphere as carbon dioxide, for an equivalent mass, nitrous oxide is nearly 300 times more potent in its ability to warm the planet.[8]
Ammonia (NH3) in the atmosphere has tripled as the result of human activities. It is a reactant in the atmosphere, where it acts as an aerosol, decreasing air quality and clinging on to water droplets, eventually resulting in acid rain. Fossil fuel combustion has contributed to a 6 or 7 fold increase in NOx flux to the atmosphere. NO2 actively alters atmospheric chemistry, and is a precursor of tropospheric (lower atmosphere) ozone production, which contributes to smog, acid rain, damages plants and increases nitrogen inputs to ecosystems.[2] Ecosystem processes can increase with nitrogen fertilization, but anthropogenic input can also result in nitrogen saturation, which weakens productivity and can kill plants.[5] Decreases in biodiversity can also result if higher nitrogen availability increases nitrogen-demanding grasses, causing a degradation of nitrogen-poor, species diverse heathlands.[9]
Wastewater treatment
Onsite sewage facilities such as septic tanks and holding tanks release large amounts of nitrogen into the environment by discharging through a drainfield into the ground. Microbial activity consumes the nitrogen and other contaminants in the wastewater.
However, in certain areas, the soil is unsuitable to handle some or all of the wastewater, and, as a result, the wastewater with the contaminants enters the aquifers. These contaminants accumulate and eventually end up in drinking water. One of the contaminants concerned about the most is nitrogen in the form of nitrates. A nitrate concentration of 10 ppm (parts per million) or 10 milligrams per liter is the current EPA limit for drinking water and typical household wastewater can produce a range of 20–85 ppm.
The health risk associated with drinking water (with >10 ppm nitrate) is the development of methemoglobinemia and has been found to cause blue baby syndrome. Several states have now started programs to introduce advanced wastewater treatment systems to the typical onsite sewage facilities. The result of these systems is an overall reduction of nitrogen, as well as other contaminants in the wastewater.
Environmental impacts
Additional risks posed by increased availability of inorganic nitrogen in aquatic ecosystems include water acidification; eutrophication of fresh and saltwater systems; and toxicity issues for animals, including humans.[10] Eutrophication often leads to lower dissolved oxygen levels in the water column, including hypoxic and anoxic conditions, which can cause cause death of aquatic fauna. Relatively sessile benthos, or bottom-dwelling creatures, are particularly vulnerable because of their lack of mobility, though large fish kills are not uncommon. Oceanic dead zones near the mouth of the Mississippi in the Gulf of Mexico are a well known example of algal bloom-induced hypoxia.[11][12]
Ammonia (NH3) is highly toxic to fish and the water discharge level of ammonia from wastewater treatment facilities must often be closely monitored. To prevent fish deaths, nitrification prior to discharge is often desirable. Land application can be an attractive alternative to the mechanical aeration needed for nitrification.
References
- ^ Steven B. Carroll; Steven D. Salt (2004). Ecology for gardeners. Timber Press. p. 93. ISBN 9780881926118.
- ^ a b c d e f Smil, V (2000). Cycles of Life. ScientificAmerican Library, New York., 2000) Cite error: The named reference "Smil" was defined multiple times with different content (see the help page).
- ^ Nitrogen: The Essential Element. Nancy M. Trautmann and Keith S. Porter. Center for Environmental Research, Cornell Cooperative Extension
- ^ Smith, B., R. L. Richards, and W. E. Newton. 2004. Catalysts for nitrogen fixation : nitrogenases, relevant chemical models and commercial processes. Kluwer Academic Publishers, Dordrecht ; Boston.
- ^ a b c Vitousek, PM; Aber, J; Howarth, RW; Likens, GE; Matson, PA; Schindler, DW; Schlesinger, WH; Tilman, GD (1997). "Human Alteration of the Global Nitrogen Cycle: Causes and Consequences". Issues in Ecology. 1: 1–17.
- ^ Holland, Elisabeth A.; Dentener, Frank J.; Braswell, Bobby H.; Sulzman, James M. (1999). "Contemporary and pre-industrial global reactive nitrogen budgets". Biogeochemistry. 46: 7. doi:10.1007/BF01007572.
- ^ Chapin, S.F. III, Matson, P.A., Mooney H.A. 2002. Principles of Terrestrial Ecosystem Ecology. Springer, New York 2002 ISBN 0387954430, p.345
- ^ Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, 22–25 September 2008, Gummersbach, Germany, R.W. Howarth and S. Bringezu, editors. 2009 Executive Summary, p. 3
- ^ Aerts, Rien and Berendse, Frank (1988). "The Effect of Increased Nutrient Availability on Vegetation Dynamics in Wet Heathlands". Vegetatio. 76 (1/2): 63.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Camargo, J.A. & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Retrieved December 10, 2010, from http://www.aseanenvironment.info/Abstract/41013039.pdf
- ^ Rabalais, Nancy N., R. Eugene Turner, and William J. Wiseman, Jr. (2002). "Gulf of Mexico Hypoxia, aka "The Dead Zone"". Ann. Rev. Ecol. Sys. 33: 235–63. doi:10.1146/annurev.ecolsys.33.010802.150513.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ Dybas, Cheryl Lyn. (2005). "Dead Zones Spreading in World Oceans". BioScience. 55 (7): 552–557. doi:10.1641/0006-3568(2005)055[0552:DZSIWO]2.0.CO;2.