Jump to content

Neodymium nickelate

From Wikipedia, the free encyclopedia
(Redirected from Neodymium Nickelate)
Neodymium nickelate
Names
Other names
Neodymium(III) nickelate
Identifiers
3D model (JSmol)
  • InChI=1S/Nd.Ni.3O/q2*+3;3*-2
    Key: QDQFJKLUAHCIBS-UHFFFAOYSA-N
  • [Nd+3].[Ni+3].[O-2].[O-2].[O-2]
Properties
NdNiO3
Molar mass 250.932 g·mol−1
Hazards
GHS labelling:[1]
GHS07: Exclamation markGHS08: Health hazard
Danger
H317, H350, H372
P261, P263, P280, P405, P501
Related compounds
Other anions
Neodymium(III) oxide
Neodymium(III) acetate
Neodymium(III) hydride
Other cations
europium nickelate
lanthanum nickelate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Neodymium nickelate is a nickelate of neodymium with a chemical formula NdNiO3. In this compound, the neodymium atom is in the +3 oxidation state.[citation needed]

Preparation

[edit]

Neodymium nickelate can be prepared by dissolving neodymium(III) oxide and nickel(II) oxide in nitric acid, followed by heating the mixture in an oxygen atmosphere.[2]

It can also be prepared by pyrolyzing a mixture of nickel nitrate and neodymium nitrate.[2][3]

It decomposes in high temperature (950 °C) by nitrogen:[2]

4 NdNiO3 → 2 Nd2NiO4 + 2 NiO + O2

It can also be reduced to the monovalent nickel compound NdNiO2 by sodium hydride at 160 °C.[4]

Physical properties

[edit]

Neodymium nickelate shows metal-insulator transition (MIT) under low temperature.[5][6] The temperature at which it transforms (TMIT) is 200K,[7] which is higher than praseodymium nickelate (130K) but lower than samarium nickelate (400K).[5][7][8][page needed] It transforms from antiferromagnetism to paramagnetism. It has demonstrated to be a first-order phase transition (this applies for praseodymium nickelate as well).[5] The temperature (TN) can be changed by varying the NiO6 octahedral distortion.[5][6] It is the only lathanide nickelate to have the same TMIT as TN.[5]

Uses

[edit]

In a 2010 study, it was found that neodymium nickelate as an anode material provided 1.7 times the current density of typical LSM anodes when integrated into a commercial SOEC and operated at 700 °C, and approximately 4 times the current density when operated at 800 °C. The increased performance is postulated to be due to higher "overstoichiometry" of oxygen in the neodymium nickelate, making it a successful conductor of both ions and electrons.[9]

Neodymium nickelate can also be used in electrocatalysts, synapse transistors, photovoltaics, memory resistors, biosensors, and electric-field sensors.[5]

References

[edit]
  1. ^ "Safety Data Sheet Neodymium Nickel Oxide" (PDF). LTS Research Laboratories, Inc. 13 July 2015. Retrieved 26 March 2022.
  2. ^ a b c Vassiliou, John K.; Hornbostel, Marc; Ziebarth, Robin; Disalvo, F.J. (1989). "Synthesis and properties of NdNiO3 prepared by low-temperature methods". Journal of Solid State Chemistry. 81 (2): 208–216. Bibcode:1989JSSCh..81..208V. doi:10.1016/0022-4596(89)90008-x. ISSN 0022-4596.
  3. ^ Escote, M.T.; da Silva, A.M.L.; Matos, J.R.; Jardim, R.F. (May 2000). "General Properties of Polycrystalline LnNiO3 (Ln=Pr, Nd, Sm) Compounds Prepared through Different Precursors". Journal of Solid State Chemistry. 151 (2): 298–307. Bibcode:2000JSSCh.151..298E. doi:10.1006/jssc.2000.8657.
  4. ^ M.A. Hayward, M.J. Rosseinsky (June 2003). "Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride". Solid State Sciences. 5 (6): 839–850. Bibcode:2003SSSci...5..839H. doi:10.1016/S1293-2558(03)00111-0.
  5. ^ a b c d e f Yang, Hongwei; Wen, Zhiwei; Shu, Jun; Cui, Yajing; Chen, Yongliang; Zhao, Yong (2021). "Structural, electrical, and magnetic properties of bulk Nd1–xSrxNiO3 (x=0–0.3)". Solid State Communications. 336: 114420. Bibcode:2021SSCom.33614420Y. doi:10.1016/j.ssc.2021.114420. ISSN 0038-1098.
  6. ^ a b Roy, Subir; Katoch, Rajesh; Gangineni, R.B.; Angappane, S. (2021). "Investigation of metal-insulator transition temperature and magnetic properties of NdNiO3 nanoparticles". Journal of Solid State Chemistry. 294: 121865. Bibcode:2021JSSCh.29421865R. doi:10.1016/j.jssc.2020.121865. ISSN 0022-4596. S2CID 229489271.
  7. ^ a b Lafez, P.; Ruello, P.; Edely, M. (2008). "Electrical and Infrared Properties of RF Sputtering of Rare Earth Nickelate (RNiO3) Thin Films with Metal Insulator-Transitions". In Lamont, Paul W. (ed.). Leading-Edge Materials Science Research. Nova Publishers. pp. 277–310. ISBN 9781600217982. Retrieved 21 April 2016.
  8. ^ Jorgensen, Finn (1996). The Complete Handbook of Magnetic Recording. McGraw-Hill.
  9. ^ Chauveau, F.; Mougin, J.; Bassat, J.M.; Mauvy, F.; Grenier, J.C. (2010). "A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ". Journal of Power Sources. 195 (3): 744–749. Bibcode:2010JPS...195..744C. doi:10.1016/j.jpowsour.2009.08.003. ISSN 0378-7753.