Naval mine: Difference between revisions
m Repairing link to disambiguation page - You can help! |
|||
Line 16: | Line 16: | ||
[[Image:Ffg58minedamage.jpg|thumb|right|300px|Closeup of the [[USS Samuel B. Roberts (FFG-58)|''Roberts''']] damaged hull.]] |
[[Image:Ffg58minedamage.jpg|thumb|right|300px|Closeup of the [[USS Samuel B. Roberts (FFG-58)|''Roberts''']] damaged hull.]] |
||
A naval mine is a self-contained explosive device placed in water to destroy ships or submarines. Unlike depth charges, they are deposited and left to wait until they are triggered by the approach of or contact with an enemy ship. Naval mines can be used offensively, to hamper enemy ships or lock them into a harbour; or defensively, to protect friendly ships and create "safe" zones. |
|||
== History == |
|||
[[Image:Chinese Naval Mine.JPG|thumb|right|180px|A 14th century drawn illustration of a naval mine and page description from the ''[[Huolongjing]]''.]] |
|||
Mines can be laid in many ways: by purpose-built minelayers, refitted ships, submarines, or airplanes—and even by dropping them into a harbour by hand. They can be inexpensive: some variants can cost around a thousand United States dollars (USD) or so, although more sophisticated mines can cost millions of USD, be equipped with several kinds of sensors, and deliver a warhead by rocket or torpedo. |
|||
The precursor to naval mines was first described by the early [[Ming Dynasty]] Chinese [[artillery]] officer [[Jiao Yu]], in his 14th century military treatise known as the ''[[Huolongjing]]''.<ref name="needham volume 5 part 7 203 205">Needham, Volume 5, Part 7, 203-205.</ref> Chinese records tell of naval explosives in the 16<sup>th</sup> century, used to fight against Japanese pirates ([[Wokou]]). This kind of naval mine was loaded in a wooden box, sealed by [[putty]]. General [[Qi Jiguang]] made several timed explosive drifting explosives to harass Japanese pirate ships.<ref>{{ cite web|url=http://www.csonline.com.cn/gb/content/2001-12/27/content_89017.htm | title=http://www.csonline.com.cn/gb/content/2001-12/27/content_89017.htm (in chinese)}}</ref> However, in the ''Tiangong Kaiwu'' ('The Exploitation of the Works of Nature') treatise, written by [[Song Yingxing]] in 1637 AD, it describes naval mines with a rip cord pulled from a hidden ambusher located on the nearby shore, which would in turn rotate a steel [[wheellock]] flint mechanism to produce sparks and ignite the fuse of the naval mine.<ref name="needham volume 5 part 7 205">Needham, Volume 5, Part 7, 205.</ref> Although Song's writing represents the rotating steel wheellock's first use with naval mines, Jiao Yu had actually described their use for [[land mine]]s back in the 14th century.<ref name="needham volume 5 part 7 199">Needham, Volume 5, Part 7, 199.</ref> |
|||
Their flexibility and cost-effectiveness make mines attractive weapons in asymmetric warfare. The cost of producing and laying a mine is usually anywhere from 0.5% to 10% of the cost to remove it, and it can take up to 200 times as long to clear a minefield as to lay it. Parts of some World War II minefields still exist, because they are too spread out and expensive to clear—and theoretically, some of these mines might stay active for hundreds of years. |
|||
There are three main uses of mines: offensive, defensive and psychological. Offensive mines are placed in enemy waters, outside harbours and in important shipping routes to sink civilian and military ships. Defensive minefields protect a coast from enemy ships and submarines and force them into areas that are easier to defend. Minefields designed for psychological effect are usually placed in trade routes and are used to stop shipping to an enemy nation. They are also spread out thinly, to create a feeling of random minefields in large areas. A single mine along a shipping route can stop shipping for days until the entire area is swept. |
|||
International law requires nations to declare when they mine an area, in order to make it easier for civil shipping to avoid the mines. The warnings do not have to be specific; during World War II, Britain declared simply that it had mined the English Channel, North Sea, and French coast. That did not stop Operation Sealion, Germany's planned invasion of Britain; Germany cancelled it for other reasons |
|||
]] flint mechanism to produce sparks and ignite the fuse of the naval mine.<ref name="needham volume 5 part 7 205">Needham, Volume 5, Part 7, 205.</ref> Although Song's writing represents the rotating steel wheellock's first use with naval mines, Jiao Yu had actually described their use for [[land mine]]s back in the 14th century.<ref name="needham volume 5 part 7 199">Needham, Volume 5, Part 7, 199.</ref> |
|||
The first plan for a sea mine in the West was by [[Ralph Rabbards]], who presented his design to Queen [[Elizabeth I of England]] in 1574.<ref name="needham volume 5 part 7 205">Needham, Volume 5, Part 7, 205.</ref> The Dutch inventor [[Cornelius Drebbel]] was employed in the Office of Ordnance by [[King Charles I of England]] to make weapons, including a "floating petard" which proved a failure.<ref>{{cite web|url=http://www.bbc.co.uk/history/historic_figures/drebbel_cornelis.shtml | title = Historic Figures: Cornelius Drebbel (1572 - 1633) | work = BBC History | accessdate=2007-03-05}}</ref> Weapons of this type were apparently tried by the English at the [[Siege of La Rochelle]] in 1627.<ref>{{cite book | title = Discoveries and inventions of the 19<sup>th</sup> Century | author=Robert Routledge | id= ISBN 1-85170-2679 | Publisher = Bracken Books | year = 1989 |page = 161}}</ref> |
The first plan for a sea mine in the West was by [[Ralph Rabbards]], who presented his design to Queen [[Elizabeth I of England]] in 1574.<ref name="needham volume 5 part 7 205">Needham, Volume 5, Part 7, 205.</ref> The Dutch inventor [[Cornelius Drebbel]] was employed in the Office of Ordnance by [[King Charles I of England]] to make weapons, including a "floating petard" which proved a failure.<ref>{{cite web|url=http://www.bbc.co.uk/history/historic_figures/drebbel_cornelis.shtml | title = Historic Figures: Cornelius Drebbel (1572 - 1633) | work = BBC History | accessdate=2007-03-05}}</ref> Weapons of this type were apparently tried by the English at the [[Siege of La Rochelle]] in 1627.<ref>{{cite book | title = Discoveries and inventions of the 19<sup>th</sup> Century | author=Robert Routledge | id= ISBN 1-85170-2679 | Publisher = Bracken Books | year = 1989 |page = 161}}</ref> |
||
Line 56: | Line 63: | ||
During the [[Korean War]], mines laid by North Korean forces damaged 11 U.S. naval vessels. |
During the [[Korean War]], mines laid by North Korean forces damaged 11 U.S. naval vessels. |
||
hey my name is aaron ladies so if you want to call please take the time to do so |
|||
thank you my number is 234-4976 talk to you later pce out girl scout |
|||
During the [[Iran-Iraq War]] from 1980 to 1988, the belligerents mined several areas of the [[Persian Gulf]] and nearby waters. On [[April 14]], [[1988]], the [[USS Samuel B. Roberts (FFG-58)|USS ''Samuel B. Roberts'' (FFG-58)]] struck an Iranian [[M-08 naval mine|M-08/39]] mine in the central Gulf [[shipping lane]], wounding 10 sailors. |
|||
During the [[Gulf War]], [[Iraq]]i naval mines severely damaged [[USS Princeton (CG-59)|USS ''Princeton'' (CG-59)]] and [[USS Tripoli (LPH-10)|USS ''Tripoli'' (LPH-10)]]. |
|||
== Types == |
== Types == |
Revision as of 15:00, 6 June 2008
This article needs additional citations for verification. (July 2007) |
A naval mine is a self-contained explosive device placed in water to destroy ships or submarines. Unlike depth charges, they are deposited and left to wait until they are triggered by the approach of or contact with an enemy ship. Naval mines can be used offensively, to hamper enemy ships or lock them into a harbour; or defensively, to protect friendly ships and create "safe" zones.
Mines can be laid in many ways: by purpose-built minelayers, refitted ships, submarines, or airplanes—and even by dropping them into a harbour by hand. They can be inexpensive: some variants can cost around a thousand United States dollars (USD) or so, although more sophisticated mines can cost millions of USD, be equipped with several kinds of sensors, and deliver a warhead by rocket or torpedo.
Their flexibility and cost-effectiveness make mines attractive weapons in asymmetric warfare. The cost of producing and laying a mine is usually anywhere from 0.5% to 10% of the cost to remove it, and it can take up to 200 times as long to clear a minefield as to lay it. Parts of some World War II minefields still exist, because they are too spread out and expensive to clear—and theoretically, some of these mines might stay active for hundreds of years.
There are three main uses of mines: offensive, defensive and psychological. Offensive mines are placed in enemy waters, outside harbours and in important shipping routes to sink civilian and military ships. Defensive minefields protect a coast from enemy ships and submarines and force them into areas that are easier to defend. Minefields designed for psychological effect are usually placed in trade routes and are used to stop shipping to an enemy nation. They are also spread out thinly, to create a feeling of random minefields in large areas. A single mine along a shipping route can stop shipping for days until the entire area is swept.
International law requires nations to declare when they mine an area, in order to make it easier for civil shipping to avoid the mines. The warnings do not have to be specific; during World War II, Britain declared simply that it had mined the English Channel, North Sea, and French coast. That did not stop Operation Sealion, Germany's planned invasion of Britain; Germany cancelled it for other reasons.
A naval mine is a self-contained explosive device placed in water to destroy ships or submarines. Unlike depth charges, they are deposited and left to wait until they are triggered by the approach of or contact with an enemy ship. Naval mines can be used offensively, to hamper enemy ships or lock them into a harbour; or defensively, to protect friendly ships and create "safe" zones.
Mines can be laid in many ways: by purpose-built minelayers, refitted ships, submarines, or airplanes—and even by dropping them into a harbour by hand. They can be inexpensive: some variants can cost around a thousand United States dollars (USD) or so, although more sophisticated mines can cost millions of USD, be equipped with several kinds of sensors, and deliver a warhead by rocket or torpedo.
Their flexibility and cost-effectiveness make mines attractive weapons in asymmetric warfare. The cost of producing and laying a mine is usually anywhere from 0.5% to 10% of the cost to remove it, and it can take up to 200 times as long to clear a minefield as to lay it. Parts of some World War II minefields still exist, because they are too spread out and expensive to clear—and theoretically, some of these mines might stay active for hundreds of years.
There are three main uses of mines: offensive, defensive and psychological. Offensive mines are placed in enemy waters, outside harbours and in important shipping routes to sink civilian and military ships. Defensive minefields protect a coast from enemy ships and submarines and force them into areas that are easier to defend. Minefields designed for psychological effect are usually placed in trade routes and are used to stop shipping to an enemy nation. They are also spread out thinly, to create a feeling of random minefields in large areas. A single mine along a shipping route can stop shipping for days until the entire area is swept.
International law requires nations to declare when they mine an area, in order to make it easier for civil shipping to avoid the mines. The warnings do not have to be specific; during World War II, Britain declared simply that it had mined the English Channel, North Sea, and French coast. That did not stop Operation Sealion, Germany's planned invasion of Britain; Germany cancelled it for other reasons ]] flint mechanism to produce sparks and ignite the fuse of the naval mine.[1] Although Song's writing represents the rotating steel wheellock's first use with naval mines, Jiao Yu had actually described their use for land mines back in the 14th century.[2]
The first plan for a sea mine in the West was by Ralph Rabbards, who presented his design to Queen Elizabeth I of England in 1574.[1] The Dutch inventor Cornelius Drebbel was employed in the Office of Ordnance by King Charles I of England to make weapons, including a "floating petard" which proved a failure.[3] Weapons of this type were apparently tried by the English at the Siege of La Rochelle in 1627.[4]
However, an American, David Bushnell invented the first practical mine for use against the British in the American War of Independence. It was a watertight keg filled with gunpowder that was floated toward the enemy. It was detonated by a percussion lock if it struck a ship.
In 1812 Russian engineer Pavel Shilling exploded an underwater mine using an electrical circuit. In 1854, during the unsuccessful attempt of the Anglo-French fleet to seize Kronshtadt fortress, British steamships HMS Merlin, HMS Vulture and HMS Firefly were damaged by underwater explosions of Russian naval mines. Generally, more than 1500 naval mines, or infernal machines, designed by Moritz von Jacobi were set by Russian naval specialists in the Gulf of Finland during the Crimea War. [citation needed]
The American Civil War saw the first successful Western use of mines by both sides. The first ship sunk by a mine was the USS Cairo in 1862 in the Yazoo River. Rear Admiral David Farragut's famous statement, "Damn the torpedoes, full speed ahead!" refers to a minefield laid at Mobile, Alabama.
In the 19th century, mines were called torpedoes, a name likely conferred by Dennis Fletcher after the torpedo fish, which gives powerful electric shocks. A spar torpedo was a mine attached to a long pole and detonated when the ship carrying it rammed another one. The H. L. Hunley used one to sink the USS Housatonic on February 17, 1864. A Harvey Torpedo was a type of floating mine towed alongside a ship, and was briefly in service in the Royal Navy in the 1870s. Other "torpedoes" attached to ships or even launched under their own power. One such weapon, called the Whitehead Torpedo after its inventor, eventually drew the appellation from static devices to self-propelled underwater missiles.
The next major use of mines was in the Russo-Japanese War in 1904, sinking the Russian battleship Petropavlovsk, killing the fleet commander, Admiral Makaroff, and most of the crew. On the other side, two Japanese battleships were sunk by Russian mines in one day.
Many of early mines were fragile and dangerous to handle, with glass containers filled with nitroglycerin or mechanical devices that activated them upon tipping. Several mine-laying ships were destroyed when their cargo exploded.
The U-boat fleet, which dominated much of the battle of the Atlantic, was small at the beginning of the war and much of the early action by German forces involved mining convoy routes and ports around Britain. The German submarines also operated in the Mediterranean Sea and its coasts, in the Caribbean Sea, and along the U.S. coast.
Initially contact mines were employed -- meaning that a ship had to physically strike one of the mines to detonate it -- usually tethered at the end of a cable just below the surface of the water. By the beginning of World War II most nations had also developed mines that could be dropped from aircraft, making it possible to lay them in enemy harbours (although they simply floated on the surface). The use of dredging and nets was effective against this type of mine, but this process was time consuming and involved closing harbors while it was completed.
Into this arena came a new mine threat. Most contact mines leave holes in ship's hulls, but some ships survived mine blasts, limping into port with buckled plates and broken backs. This appeared to be due to a new type of magnetic mine, detonating at a distance from the ship, and doing damage with the shockwave of the explosion. Often ships that had successfully run the gauntlet of the Atlantic crossing were destroyed entering freshly mineswept harbors on Britain's coast. More shipping was being lost than could be replaced, and Churchill ordered that the intact recovery of one of these new mines was of highest priority.
The British experienced a stroke of luck in November 1939. A German mine was dropped from an aircraft onto the mud flats of the Thames estuary during low tide. As if this was not sufficiently good fortune, the land belonged to the army, and a base with men and workshops was at hand. Experts were dispatched from London to investigate the mine. They had some idea that the mines used magnetic sensors, so everyone removed all metal, including their buttons, and made tools out of non-magnetic brass. They disarmed the mine and rushed it to labs at Portsmouth, where scientists discovered a new type of arming mechanism.
The mechanism had a sensitivity level that could be set, and the units of the scale were in milligauss. Gauss is a measurement for the strength of a magnetic field, demonstrating how it went off before coming into contact with the ship. Using the detector from the mine, they were able to study the effect of a ship passing near it. A ship or large ferrous object passing through the earth's magnetic field will concentrate the field at that point. The mine's detector was designed to go off at the mid-point of the ship passing overhead.
From this data, methods were developed to clear the mines. Early methods included the use of large electromagnets dragged behind ships, or on low-flying aircraft (a number of older bombers like the Vickers Wellington were used for this). Both of these methods had the disadvantage of "sweeping" only a small strip. A better solution was found in the "Double-L Sweep" [5] using electrical cables dragged behind ships that passed large pulses of current through the seawater. This induced a large magnetic field and swept the entire area between the two ships. The older methods continued to be used in smaller areas. The Suez Canal continued to be swept by aircraft, for instance.
While these methods were useful for clearing mines from local ports, they were of little or no use for enemy-controlled areas. These were typically visited by warships, and the majority of the fleet then underwent a massive degaussing process, where their hulls had a slight "south" bias induced into them. This offset the concentration effect almost to zero.
Initially major warships and large troopships had a copper degaussing coil fitted around the perimeter of the hull, energised by the ship's electrical system whenever in suspected magnetic-mined waters. Some of the first to be so-fitted being the carrier HMS Ark Royal and the liners RMS Queen Mary and RMS Queen Elizabeth which were used as troopships. This was felt to be impracticable for the myriad of smaller warships and merchant vessels, not least due to the amount of copper that would be required. It was found that 'wiping' a current-carrying cable up and down a ship' hull [6] temporarily cancelled the ships' magnetic signature sufficiently to nullify the threat. This started in late 1939, and by 1940 merchant vessels and the smaller British warships were largely immune for the few months at a time until they once again built up a field. Many of the boats that sailed to Dunkirk were degaussed in a marathon four day effort by degaussing stations.
The Germans had also developed a pressure-activated mine and planned to deploy it as well, but they saved it for later use when it became clear the British had defeated the magnetic system.
Since World War II, mines have damaged or sunk 14 US Navy ships, whereas air and missile attacks have damaged four.
During the Korean War, mines laid by North Korean forces damaged 11 U.S. naval vessels. hey my name is aaron ladies so if you want to call please take the time to do so thank you my number is 234-4976 talk to you later pce out girl scout
Types
Naval mines may be classified into two major groups.
Contact mines
The earliest mines were usually of this type. They are still used today, as they are extremely low cost compared to any other anti-ship weapon and are effective, both as a terror weapon and to sink enemy ships. Contact mines need to be very close to the target before they detonate, limiting the damage. (Read the section on damage, below, for explanation).
Early mines had mechanical mechanisms to detonate them, but these were superseded in the 1870s by the Hertz Horn (or chemical horn), which was found to work reliably even after the mine had been in the sea for several years. The mine's upper half is studded with hollow lead protuberances, each containing a glass vial filled with sulfuric acid. When a ship's hull crushes the metal horn, it cracks the vial inside it, allowing the acid to run down a tube and into a lead-acid battery which until then contains no acid electrolyte. This energizes the battery, which detonates the explosive.
Earlier forms of the detonator used a vial filled with sulfuric acid, surrounded by the mixture of potassium perchlorate and sugar. When the vial was crushed, the acid ignited the perchlorate-sugar mix, and the resulting flame ignited the gunpowder charge.
During World War I the British heavily mined the English Channel and later large areas of the North Sea to prevent German submarines from using it. As the submarine could be at any depth down to the seabed, an American invention, the antenna mine, was widely used. This had a copper wire attached to a buoy that floated above the mine. The top part of the cable connecting the buoy to the weight on the seabed was also made of copper. The copper wire was insulated from the steel cable below it. If a submarine's steel hull touched the copper wire, the slight voltage produced because of the contact between two dissimilar metals was amplified and detonated the explosive.
Limpet mines
Limpet mines are a special form of contact mine which are attached to the target by magnets and left, and are so named because of the superficial similarity to the mollusk, limpet. A swimmer or diver usually performs this task. Normally they are directly attached, but the warhead of the human torpedo was linked to the magnets by wires about one foot (30 cm) long.
Usually they are set off by a time fuze. They may also have an anti-removal system making it explode if the mine is torn off by enemy divers or by other explosions. Sometimes the limpet mine had a small propeller which would detonate when the ship had sailed a certain distance. This ensures that the ship was likely to sink in deep water out of reach of easy salvage and makes it harder to determine the reason for the sinking.
Typically they have special compartments within them to ensure that the mine has only a slight negative buoyancy, making them easier to handle.
A British limpet mine was developed by Stuart MacRae (editor of 'Science Armchair Magazine') and Major C.V. Clarke in 1939 using improvised development techniques.[7][8]
An example of the use of limpet mines by British special forces was in Operation Frankton which had the objective of disabling and sinking merchant shipping moored at Bordeaux, France in 1942. The operation was also the subject of a feature film titled The Cockleshell Heroes. The "limpets" used by the British during World War II contained only 4 kg of explosive, but placed 2 meters below the water line they caused a hole in a ship one meter wide.
In 1980 a limpet mine was used to sink the Sierra,[9] a pirate whaling vessel which docked in hiding in Portugal after a confrontation with Sea Shepherd, both exposing the Portuguese government for lying to international Governments about it being a safe haven for illegal whalers and encouraging a worldwide backlash against whaling in general, later that year approximately half the Spanish whaling fleet was sunk in a similar fashion,[10] rewards were also offered for the safe-sinking of whaling vessels by various ethical organisations.
Another well known use was the sinking of the Rainbow Warrior by the French DGSE in Auckland harbour, New Zealand, on July 10 1985 to prevent them bringing attention to the nuclear testing underway.
- Images of a limpet mine: [1] [2] [3]
- Image of limpet mine used in Operation Frankton
Floating contact mines
Generally, this mine type is set to float just below the surface of the water or as deep as five meters. A steel cable connecting the mine to an anchor on the seabed prevents them from drifting away. The explosive and detonating mechanism is contained in a buoyant metal or plastic shell. The depth below the surface at which the mine floats can be set so that only deep draft vessels such as aircraft carriers, battleships or large cargo ships are at risk. By setting the depth to ten metres, this prevents a less valuable ship from detonating the mine. Similarly, in littoral waters it is important to ensure that the mine does not become visible when the sea level falls at low tide, so the preset cable length is adjusted to take account of tide variations. Even as far back as the Second World War, mines capable of being moored in 300 metres of ocean existed.
Generally, floating mines have a weight of around 200 kg, including 80 kg of explosives e.g. TNT, minol or amatol.
During WWII mine traps were used for blocking port entrances. Two floating mines were anchored some distance apart on either side of a shipping channel, linked by a chain. When a deep draft vessel passed through the trap, the chain would be pulled along by it, and drag both mines into opposite sides of the ship. The resulting double explosion often sank the ship. This system was not used extensively, but proved effective in blocking ports.
Drifting contact mines
Drifting mines were occasionally used during World War I and World War II. However, they were more feared than effective. A drifting mine is simply a floating mine without any mooring. Sometimes floating mines break from their moorings and become drifting mines, but modern mines should be constructed to deactivate in this event. After several years at sea, the deactivation mechanism might not function as intended and the mines may remain active. Admiral Jellicoe's British fleet did not pursue and destroy the outnumbered German High Seas Fleet when it turned away at the Battle of Jutland because he thought they were leading him into a trap. He believed that the Germans either were leaving floating mines in their wake, or were drawing him towards submarines. Both dangers were imaginary - the German fleet did not carry mines.
Churchill promoted "Operation Royal Marine" in 1940 and again in 1944 where floating mines were put into the Rhine in France to float down the river, becoming active after a fixed interval by which time they should have reached German territory.
After World War I the drifting contact mine was banned, but was occasionally used during World War II. The drifting mines were much harder to remove after the war and they caused about as much damage to both sides.
These mines usually weighed 120 kg, including 80 kg of explosives (TNT).
Bottom contact mines
A bottom contact mine is the simplest form of mine. It is merely an explosive charge and a trigger lying on the seafloor. They have been used against submarines, as submarines sometimes lie on the seafloor to reduce their acoustic signature. They are also used to prevent landing craft from reaching the shore and were a major obstacle during the D-Day landings. The Germans used antitank mines here with minor modifications to make them more reliable underwater, attaching the mines to the front of many of the obstacles seen in photos of the landing.
These mines usually weighed 2 to 50 kg, including 1 to 40 kg of explosives (TNT or hexatonal).
Remotely controlled mines
Frequently used in combination with coastal artillery and hydrophones, remote controlled (or command detonation) mines can be in place in peacetime, which is a huge advantage in blocking important shipping routes. The mines are usually equipped to be turned into "normal" mines with a switch (which prevents the enemy from simply capturing the controlling station and deactivating the mines), detonated by hand or be allowed to detonate on their own. The earliest ones were developed around 1812 by Robert Fulton. The first use was moored mines used in the American Civil War, detonated electrically from shore. These were seen as superior to contact mines because they only deprived the waterway to the enemy.
Modern examples usually weigh 200 kg (440 lb), including 80 kg (175 lb) of explosives (TNT or hexatonal).
Moored mines
The moored mine is the backbone of modern mine systems. They are deployed where water is too deep for bottom mines. Using several kinds of instruments to detect an enemy, usually a combination of acoustic, magnetic and pressure sensors. More exotic ones include optical shadows or electro potential sensors. These cost many times more than contact mines. Moored mines are effective against most kinds of ships. Being cost-efficient compared to other anti-ship weapons, they can be deployed in large numbers, making them useful area denial or "channelizing" weapons. Moored mines usually have lifetimes over 10 years, and some almost unlimited. These mines usually weigh 200 kg (440 lb), including 80 kg (175 lb) of explosives (hexatonal). In excess of 150 kg (330 lb) of explosives the mine becomes inefficient, as it becomes too large to handle and the extra explosives add little to the mine's effectiveness.
Bottom mines
Bottom mines are used when the water is no more than 60 meters (180 ft) deep or when mining for submarines down to around 200 meters (660 ft). They are much harder to detect and sweep, and can carry a much larger warhead than a moored mine. Bottom mines commonly use pressure sensitive exploders, which are less sensitive to sweeping.
These mines usually weigh between 150 and 1,500 kilograms (330 to 3,300 pounds), including between 125 and 1,400 kg (275 to 3,090 pounds) of explosives.
Influence mines
These mines are triggered by the influence of a ship or submarine, rather than direct contact. Such mines incorporate electronic sensors designed to detect the presence of a vessel and detonate when it comes within the blast range of the warhead. The fuzes on such mines may incorporate one or more of the following sensors: magnetic, passive acoustic or water pressure displacement caused by the proximity of a vessel.
First used during the Second World War, the sophistication of influence mine fuzes has increased considerably over the years as first transistors and then microprocessors have been incorporated into designs. Simple magnetic sensors have been superseded by total-field magnetometers. Whereas early magnetic mine fuzes would respond only to changes in a single component of a target vessel's magnetic field, a total field magnetometer responds to changes in the magnitude of the total background field. Similarly, the original broadband hydrophones of 1940s acoustic mines (which operate on the integrated volume of all frequencies) have been replaced by narrow-band sensors which are much more sensitive and selective. Mines can now be programmed to listen for highly specific acoustic signatures (e.g. a gas turbine powerplant and/or cavitation sounds from a particular design of propellor) and ignore all others. The sophistication of modern electronic mine fuzes incorporating these Digital Signal Processing capabilities makes it much more difficult to "trick" the sensors with electronic countermeasures because the combined range of sensors working together (e.g. magnetic, passive acoustic and water pressure) means they are very discriminating against false inputs.
Modern influence mines are computerised, with all the programmability that this implies e.g. the ability to quickly load new acoustic signatures into fuzes, or program them to detect a single, highly distinct target signature. In this way, a mine with a passive acoustic fuze can be programmed to ignore all friendly vessels plus small enemy vessels, only detonating when a very large enemy target passes over it. Alternatively, the mine can be programmed specifically to ignore all surface vessels regardless of size and exclusively target submarines.
Even as far back as the Second World War it was possible to incorporate a "ship counter" facility into mine fuzes i.e. set the mine to ignore the first two ships to pass over it (which could be mine-sweepers deliberately trying to trigger mines) but detonate when the third ship passes overhead - which could be a high value target such as an aircraft carrier or oil tanker. Even though modern mines are generally powered by a long life lithium battery, it is important to conserve power because they may need to remain active for months or even years. For this reason, most influence mines are designed to remain in a semi-dormant state until an unpowered (e.g. deflection of a magnetic compass needle) or low-powered sensor detects the possible presence of a vessel, at which point the mine fuze powers up fully and the passive acoustic sensors will begin to operate for some minutes. Obviously, it is possible to program computerised mines to delay activation for days or weeks after being laid. Similarly, they can be programmed to self-destruct or render themselves safe after a preset period of time e.g. 12 days or 12 months. As a general rule of thumb, the more sophisticated the mine design, the more likely it is to have some form of anti-handling device fitted in order to hinder clearance by divers or remotely piloted submersibles.
Unusual mines
This section needs expansion. You can help by adding to it. (March 2008) |
Several specialized mines have been developed for other purposes than the common minefield.
- Anti sweep mine
The anti sweep mine is a very small mine (40 kg warhead) with as small a floating device as possible. When the wire of a mine sweep hits the mine, it "sinks", letting the sweep wire drag along the anchoring wire of the mine until the sweep hits the mine.[clarification needed] That detonates the mine and cuts the sweeping wire. They are very cheap and usually used in combination with other mines in a minefield to make sweeping more difficult.[clarification needed]
- Rocket mine
A Russian invention, the rocket mine is a bottom distance mine that fires a homing high-speed rocket (not torpedo) upwards towards the target.[clarification needed] It is intended to allow a bottom mine to attack surface ships as well as submarines from a greater depth.
- Torpedo mine
The torpedo mine is a self-propelled variety, able to lie in wait for a target and then pursue it e.g. the CAPTOR mine. Other designs such as the Mk 67 Submarine Launched Mobile Mine [4] (which is based on a Mark 37 torpedo) are capable of swimming as far as 10 miles through or into a channel, harbor, shallow water area and other zones which would normally be inaccessible to craft laying the device. After reaching the target area they sink to the sea bed and act like conventionally laid influence mines. As a general rule, torpedo mines incorporate computerised acoustic and magnetic fuzes.
The U.S. Mark 24 "mine", code-named FIDO, was actually an ASW homing torpedo. The mine designation was disinformation to conceal its function.
- Bouquet mine
The bouquet mine is a single anchor attached to several floating mines. It is designed so that when one mine is swept/detonated, another takes its place.[citation needed] It is a very sensitive construction and lacks reliability.
- Ascending mine
The ascending mine is a floating distance mine that may cut its mooring or in some other way float higher when it detects a target.[citation needed] It lets a single floating mine cover a much larger depth range.
- Daisy-chained mine
This comprises two moored, floating contact mines which are tethered together by a length of steel cable or chain. Typically, each mine is situated approximately 60 feet (18 m) away from its neighbour, and each floats a few metres below the surface of the ocean. When the target ship hits the steel cable, the mines on either side are drawn down the side of the ship's hull, exploding on contact. In this manner it is possible to target ships which might pass safely between two individually moored mines. Daisy-chained mines are a very simple concept which was used during the Second World War.
- Dummy mine
Plastic drums filled with sand or concrete are periodically rolled off the side of ships as real mines are laid in large mine-fields. These false targets (designed to be of a similar shape and size as genuine mines) are intended to slow down the process of mine clearance: a mine-hunter is forced to investigate each suspicious sonar contact on the sea bed, whether it is real or not.
Mine laying
Historically several methods were used to lay mines. During the First and Second World Wars, the Germans used U-boats to lay mines around the UK. In the Second World War, aircraft came into favour for mine laying with the one of largest such examples is the mining of the Japanese sea routes in Operation Starvation.
Laying a minefield is a relatively fast process with specialized ships, which is still today the most common method. These minelayers can carry several thousand mines and manoeuvre with high precision. The mines are dropped at a predefined interval into the water behind the ship. Each mine is recorded for later clearing, but it is not unusual for these recordings to be lost together with the ships. Therefore many countries demand that all mining operations shall be planned on land and records kept so the mines can later be recovered more easily.
Other methods to lay minefields include:
- Converted merchant ships - rolled or slid down ramps
- Aircraft - descent to the water is slowed by a parachute
- Submarines - launched from torpedo tubes or deployed from specialized mine racks on the sides of the submarine
- Combat boats - rolled off the side of the boat
- Camouflaged boats - masquerading as fishing boats
- Dropping from the shore - typically smaller, shallow-water mines
- Attack divers - smaller shallow-water mines
In some cases, mines are automatically activated upon contact with the water. In others, a safety lanyard is pulled (e.g. one end attached to the rail of a ship) which starts an automatic timer countdown before the arming process is complete. Typically, the automatic safety-arming process takes some minutes to complete. This is in order to give the people laying the mines sufficient time to move out of its activation/blast zone.
Aerial mining in World War II
Germany
In the 1930s, Germany had experimented with the laying of mines by aircraft; it became a crucial element in their overall mining strategy. Aircraft had the advantage of speed, and they would never get caught in their own minefields. German mines held a large 1,000 lb. (450 kg) explosive charge. From April to June 1940, the Luftwaffe laid 1,000 mines in British waters. Soviet ports were mined, as was the Arctic convoy route to Murmansk.[11] The Heinkel He 115 could carry two medium or one large mine while the Heinkel He 59, Dornier Do 18, Junkers Ju 88 and Heinkel He 111 could carry more.
Soviet Union
The USSR was relatively ineffective in its use of naval mines in WWII in comparison with its record in previous wars.[12] Small mines were developed for use in rivers and lakes, and special mines for shallow water. A very large chemical mine was designed to sink through ice with the aid of a melting compound. Special aerial mine designs finally arrived in 1943-1944, the AMD-500 and AMD-1000.[13] Various Soviet Naval Aviation torpedo bombers were pressed into the role of aerial mining in the Baltic Sea and the Black Sea, including Ilyushin DB-3s, Il-4s and Lend Lease Douglas Boston IIIs.[14]
United Kingdom
In September 1939, the UK announced the placement of extensive defensive minefields in waters surrounding the Home Islands. Offensive aerial mining operations began in April 1940 when 38 mines were laid at each of these locations: the Elbe River, the port of Lubeck and the German naval base at Kiel. In the next 20 months, mines delivered by aircraft sank or damaged 164 Axis ships with the loss of 94 aircraft. By comparison, direct aerial attacks on Axis shipping had sunk or damaged 105 vessels at a cost of 373 aircraft lost. The advantage of aerial mining became clear. The United Kingdom geared up for mining; a total of 48,000 aerial mines were laid by the Royal Air Force (RAF) in the European Theatre during World War II.[15]
United States
The United States's early aerial mining efforts used smaller aircraft unable to carry many mines. Using TBF Avenger torpedo bombers, the US Navy mounted a direct aerial mining attack on enemy shipping in Palau on 30 March 1944 in concert with simultaneous conventional bombing and strafing attacks. The dropping of 78 mines stopped 32 Japanese ships from escaping Koror harbor; the combined operation sank or damaged 36 ships.[16] Two Avengers were lost; their crews were recovered.[17] The mines brought port usage to a halt for 20 days; further mine-laying in the area contributed to the Japanese abandoning Palau as a base.[18]
As early as 1942, American mining experts such as Naval Ordnance Laboratory scientist Dr. Ellis A. Johnson, Commander, Naval Reserve, suggested massive aerial mining operations against Japan's "outer zone" (Korea and northern China) as well as the "inner zone", their home islands. First, aerial mines would have to be developed further and manufactured in large numbers. Second, laying the mines would require a sizable air group. The US Army Air Force had the carrying capacity but considered mining to be the Navy's job. The US Navy lacked suitable aircraft. Johnson set about convincing General Curtis LeMay of the efficacy of very heavy bombers laying aerial mines.[19]
In the meantime, B-24 Liberator, PBY Catalina and other available bomber aircraft took part in localized mining operations in the Southwest Pacific and the China Burma India (CBI) Theaters, beginning with a very successful attack on the Yangon River in February 1943. Aerial minelaying operations involved a coalition of British, Australian and American aircrews, with the RAF and the Royal Australian Air Force (RAAF) carrying out 60% of the sorties and the USAAF and US Navy covering 40%. Both British and American mines were used. Japanese merchant shipping suffered tremendous losses, while Japanese mine sweeping forces were spread too thin attending to far-flung ports and extensive coastlines. Admiral Thomas C. Kinkaid, who directed nearly all RAAF mining operations in CBI, heartily endorsed aerial mining, writing in July 1944 that "aerial mining operations were of the order of 100 times as destructive to the enemy as an equal number of bombing missions against land targets."[20]
Finally, in March 1945, Operation Starvation began in earnest, using 160 of LeMay's B-29 Superfortress bombers to attack Japan's inner zone. Almost half of the mines were the US-built Mark 25 model, carrying 1250 lbs of explosives and weighing about 2,000 lbs. Other mines used included the smaller 1,000 lb Mark 26.[21] 15 B-29s were lost while 293 enemy merchant ships were sunk or damaged.[22] 12,000 aerial mines were laid, a significant barrier to Japan's access to outside resources. Prince Fumimaro Konoe said after the war that the aerial mining by B-29s had been "equally as effective as the B-29 attacks on Japanese industry at the closing stages of the war when all food supplies and critical material were prevented from reaching the Japanese home islands."[23] The United States Strategic Bombing Survey (Pacific War) concluded that it would have been more efficient to combine the United States's effective anti-shipping submarine effort with land- and carrier-based air power to strike harder against merchant shipping and begin a more extensive aerial mining campaign earlier in the war. Survey analysts projected that this would have starved Japan, forcing an earlier end to the war.[24] After the war, Dr. Johnson looked at the Japan inner zone shipping results, comparing the total economic cost of submarine-delivered mines versus air-dropped mines and found that, though 1 in 12 submarine mines connected with the enemy as opposed to 1 in 21 for aircraft mines, the aerial mining operation was about ten times less expensive per enemy ton sunk.[25]
Clearing WWII aerial mines
Between 600,000 and 1,000,000 naval mines of all types were laid in World War II. Advancing military forces worked to clear mines from newly-taken areas, but extensive minefields remained in place after the war. Air-dropped mines had an additional problem for mine sweeping operations: they weren't meticulously charted. In Japan, much of the B-29 mine-laying work had been performed at high altitude, with the drifting on the wind of mines carried by parachute adding a randomizing factor to their placement. Generalized danger areas were identified, with only the quantity of mines given in detail. Mines used in Operation Starvation were supposed to be self-sterilizing, but the circuit did not always work. Clearing the mines took so many years that the task was eventually given to the Japan Maritime Self-Defense Force.[26]
Damage
The damage that may be received from a mine depends on the distance that the target is away from the area of detonation. The amount of damage that a ship takes is not always directly connected to the explosive physical impact of the mine.
- Direct damage
Usually only created by contact mines, direct damage is a hole blown in the ship. Among the crew, shrapnel wounds are the most common form of damage.[citation needed] This rarely sinks the ship, but might flood one or two compartments – usually in the bow.
- Bubble jet effect
The bubble jet effect occurs when a mine detonates in the water some distance away from the ship. The explosion creates a "hole" in the water, and due to the difference in pressure, this sphere will collapse from the bottom. This creates a "pillar" of water that can go over a hundred meters into the air. The damage to the ship is heavy. The water breaks a meter wide hole straight through the ship, flooding one or more compartments, and might break the ship apart. The crew in the areas hit by the pillar are usually killed instantly.[citation needed] Other damage is usually limited.[citation needed]
- Shaking effect
If the mine detonates at a distance from the ship, the change in water pressure causes the ship to resonate. This is frequently the most deadly type of explosion, if strong enough.[citation needed] The whole ship is dangerously shaken and everything onboard is tossed around. Engines rip from their beds, cables from their holders, etc. A badly shaken ship usually sinks quickly, with hundreds, or even thousands of small leaks all over the ship and no way to power the pumps.[citation needed] The crew fare no better, as the violent shaking tosses them around.
- Photos of damage done to the USS Samuel B. Roberts (FFG 58) by an Iranian M-08 moored mine in 1988.
Countermeasures
Weapons are frequently a few steps ahead of countermeasures, and mines are no exception. In this field the British, with their large sea-going navy, have had the bulk of world experience, and most anti-mine developments, such as de-gaussing and the double-L sweep were British inventions. When on operational missions, such as the recent invasion of Iraq, the US still rely on British and Canadian minesweeping services. The US have worked on some innovative mine hunting countermeasures, such as the use of military dolphins to detect and flag mines. However, they are of questionable effectiveness.
Passive countermeasures
By building ships with as low signature as possible one can avoid detonating mines. This is especially true for minesweepers and mine hunters that work in minefields. These ships are built out of glass fibre or even wood instead of steel to avoid magnetic signatures, they use special propulsion systems, such as Voith-Schneider propellers, to limit the acoustic signature. They are built with hulls that produce a minimal pressure signature. These measures create other problems. They are expensive, slow, and vulnerable to enemy fire. Therefore, they need protection. Many modern ships have a mine warning sonar—a simple sonar looking forward and warning the crew if it detects possible mines ahead. It is only effective when moving slowly.
A steel-hulled ship can be degaussed (more correctly, deoerstedted or depermed) using a special degaussing station that contains many large coils and induces a magnetic field in the hull with alternating current to demagnetize the hull. This is a rather problematic solution, as magnetic compasses need recalibration and all metal objects must be kept in exactly the same place. Ships slowly regain their magnetic field as they travel through the Earth's magnetic field, so the process has to be repeated every six months.
A variation on this technique, called wiping, was developed by Dr. Charles F. Goodeve, RCNVR, which saved time and resources.
Between 1941 and 1943 the US Naval Gun factory (a division of the Naval Ordinance Laboratory) in Washington D.C. built physical models of all US Naval ships. Three kinds of steel were used in shipbuilding: mild steel for bulkheads, a mixture of mild steel and high tensile steel for the hull, and special treatment steel for armor plate. The models were placed within coils which would simulate the earth's magnetic field at any location. The magnetic signatures were measured with degaussing coils. The objective was to reduce the vertical component of the Earth's field combined with the ships field at the usual depth of German mines. From the measurements, coils were placed and coil currents determined to minimize the chance of detonation for any ship at any heading at any latitude.
Some ships are built with magnetic inductors, large coils placed along the ship to counter the ship's magnetic field. Using magnetic probes in strategic parts of the ship, the strength of the current in the coils can be adjusted to minimize the total magnetic field. This is a heavy and clumsy solution, suited only to smaller ships.
Active countermeasures
Active countermeasures are ways to clear a path through a minefield or remove it completely. This is one of the most important tasks of any mine warfare flotilla.
Mine sweeping
A sweep is either a contact sweep, a wire dragged through the water by one or two ships to cut the mooring wire of floating mines, or a distance sweep that mimics a ship to detonate the mines. The sweeps are dragged by minesweepers, either military ships or converted trawlers. Each run covers between one and two hundred meters, and the ships must move slowly in a straight line, making them vulnerable to enemy fire. This was exploited by the Turkish army in the Battle of Gallipoli in 1915, when mobile howitzer batteries prevented the British and French from clearing a way through minefields.
If a contact sweep hits a mine, the wire of the sweep rubs against the mooring wire until it is cut. Sometimes "cutters", explosive devices to cut the mine's wire, are used to lessen the strain on the sweeping wire. Mines cut free are recorded and collected for research or shot with a deck gun.
Minesweepers protect themselves with an oropesa or paravane instead of a second minesweeper. These are torpedo-shaped towed bodies, similar in shape to a Harvey Torpedo, that are streamed from the sweeping vessel thus keeping the sweep at a determined depth and position. Some large warships were routinely equipped with paravane sweeps near the bows in case they inadvertently sailed into minefields — the mine would be deflected towards the paravane by the wire instead of towards the ship by its wake. More recently, heavy-lift helicopters have dragged minesweeping sleds, as in the 1991 Persian Gulf War.
The distance sweep mimics the sound and magnetism of a ship and is pulled behind the sweeper. It has floating coils and large underwater drums. It is the only sweep effective against bottom mines.
During the Second World War, RAF Coastal Command used Vickers Wellington bombers fitted with degaussing coils to trigger magnetic mines.
Modern influence mines have the ability to discriminate against false inputs and are therefore much harder to sweep. They often contain inherent anti-sweeping mechanisms. For example, they may be programmed to respond to the unique noise of a particular ship-type, its associated magnetic signature and the typical pressure displacement of such a vessel. As a result, a mine-sweeper must accurately guess and mimic the required target signature in order to trigger detonation. The task is complicated by the fact that an influence mine may have one or more of a hundred different potential target signatures programmed into it.
Another anti-sweeping mechanism is a ship-counter in the mine fuze. When enabled, this only allows detonation after the mine fuze has been triggered a pre-set number of times. To further complicate matters, influence mines may be programmed to arm themselves (or disarm automatically - known as self-sterilization) after a pre-set time. Obviously, during the pre-set arming delay (which could last days or even weeks) the mine would remain dormant and completely ignore any target stimulus, whether it was genuine or faked.
When influence mines are laid in an ocean minefield, they may have various combinations of fuze settings configured. For example, some mines (with the acoustic sensor enabled) may become active within three hours of being laid, others (with the acoustic and magnetic sensors enabled) may become active after two weeks, but have the ship counter mechanism set to ignore the first two trigger events, and still others in the same minefield (with the magnetic and pressure sensors enabled) will not become armed until three weeks have passed. Naturally, groups of mines within this mine-field can have different target signatures programmed into them which may or may not have a degree of overlap in them. Suffice to say the fuzes on influence mines allow many different permutations, which complicates the clearance process.
Using ship-counters, arming delays and highly specific target signatures in mine fuzes can create a dangerous illusion for mariners in shipping lanes i.e. that mines do not exist in a particular area (because a succession of vessels have already passed through safely) or alternatively that recent mine-sweeping operations have been successful and all mines in the zone have been located and cleared.
Mine hunting
Mine hunting is very different from sweeping, even if some minehunters can do both tasks. When mine hunting, the mines are located using sonar, then inspected and destroyed either by divers or ROVs (remote controlled unmanned mini submarines). It is slow, but also the most secure way to remove mines. Mine hunting started during the Second World War, but it was only after the war that it became a truly effective method.
Sea mammals (mainly the Bottlenose Dolphin) have also been trained to hunt and mark mines, most famously by the U.S. Navy Marine Mammal Program. Mine-clearance dolphins were deployed in the Persian Gulf during the Iraq War in 2003. The Navy claims that these dolphins were effective in helping to clear more than 100 antiship mines and underwater booby traps from the port of Umm Qasr.[27] Needless to say, animal rights activists have depreciated the practice, some complaining that dolphins are in fact "our betters" and should not be risked to save the lives of humans, particularly humans who wage war and knowingly take war's risks.
French naval officerJacques Yves Cousteau's Undersea Research Group was once involved in mine-hunting operations: They removed or detonated a variety of German mines, but one particularly nasty batch—equipped with acutely sensitive pressure, magnetic, and acoustic sensors and wired together so that one explosion would trigger the rest—was simply left undisturbed for years until corrosion would (hopefully) disable the mines.[28])
Mine breaking
A more drastic method is simply to take a cargo ship, load her with cargo that makes her less vulnerable to sinking (wood for example) and drive her through the minefield, letting the ship to be protected follow the same path. This method was employed by the German Kriegsmarine during WWII, using converted ships known as Sperrbrecher. Alternatively, a shallow draught vessel can be steamed through the minefield at high speed to generate a pressure wave sufficient to trigger mines, with the minesweeper moving fast enough to be sufficiently clear of the pressure wave so that triggered mines do not destroy the ship itself. These techniques are the only way to sweep pressure mines. The technique can be simply countered by use of a ship-counter, set to allow a certain number of passes before the mine is actually triggered. Modern doctrine calls for ground mines to be hunted rather than swept.
An updated form of mine breaking is the use of small unmanned ROVs that simulate the acoustic and magnetic signatures of larger ships and are built to survive exploding mines. Repeated sweeps would be required in case one or more of the mines had its "ship counter" facility enabled i.e. were programmed to ignore the first 2, 3, or even 6 target activations.
National arsenals
US Mines
The United States Navy MK56 ASW mine (the oldest still in use by the US) was developed in 1966. More advanced mines include the MK60 CAPTOR (short for "encapsulated torpedo"), the MK62 and MK63 Quickstrike and the MK67 SLMM (Submarine Launched Mobile Mine). Today, most U.S. naval mines are delivered by aircraft.
MK67 SLMM Submarine Launched Mobile Mine
The SLMM was developed by the United States as a submarine deployed mine for use in areas inaccessible for other mine deployment techniques or for covert mining of hostile environments. The SLMM is a shallow-water mine and is basically a modified Mark 37 torpedo.
General characteristics
- Type: Submarine-laid bottom mine
- Detection System: Magnetic/seismic/pressure target detection devices (TDDs)
- Dimensions: 485 mm by 4.09 m (19 by 161 in)
- Depth Range: Shallow water
- Weight: 754 kg (1658 lb)
- Explosives: 230 kg (510 lb) high explosive
- Date Deployed: 1987
MK65 Quickstrike
The Quickstrike[5] is a family of shallow-water aircraft-laid mines used by the United States, primarily against surface craft. The MK65 is a 2,000-lb (900 kg) dedicated, purpose-built mine. However, other Quickstrike versions (MK62, MK63, and MK64) are converted general-purpose bombs. These latter three mines are actually a single type of electronic fuze fitted to Mk82, Mk83 and Mk84 air-dropped bombs. Because this latter type of Quickstrike fuze only takes up a small amount of storage space compared to a dedicated sea mine, the air-dropped bomb casings have dual purpose i.e. can be fitted with conventional contact fuzes and dropped on land targets, or have a Quickstrike fuze fitted which converts them into sea mines.
General characteristics
- Type: aircraft-laid bottom mine
- Detection System: Magnetic/seismic/pressure target detection devices (TDDs)
- Dimensions: 740 mm by 3.25 m (29 by 128 in)
- Depth Range: Shallow water
- Weight: 1086 kg (2390 lb)
- Explosives: Various loads
- Date Deployed: 1983
MK56
General characteristics
- Type: Aircraft laid moored mine
- Detection System: Total field magnetic exploder
- Dimensions: 570 mm by 2.9 m (22.4 by 114.3 in)
- Depth Range: Moderate depths
- Weight: 909 kg (2000 lb)
- Explosives: 164 kg (360 lb) HBX-3
- Date Deployed: 1966
Royal Navy
According to a statement made to the UK Parliament in 2002:[29]
"...the Royal Navy does not have any mine stocks and has not had since 1992. Notwithstanding this, the United Kingdom retains the capability to lay mines and continues research into mine exploitation. Practice mines, used for exercises, continue to be laid in order to retain the necessary skills".
However, a British company (BAE Systems) does manufacture the 'Stonefish' influence mine for export[6] to friendly countries such as Australia, which has both war stock and training versions. The computerised fuze on a Stonefish mine contains acoustic, magnetic and water pressure displacement target detection sensors. Stonefish can be deployed by fixed-wing aircraft, helicopters, surface vessels and submarines. A optional kit is available to allow Stonefish to be air-dropped, comprising an aerodynamic tail-fin section and parachute pack to retard the weapon's descent. The operating depth of Stonefish ranges between 30 and 200 metres. The mine weighs 990 kilograms and contains a 600 kilogram aluminised PBX explosive warhead. The shelf life of a Stonefish mine is 20 years, and it has an operational lifetime of 700 days after being deployed on the seabed. Stonefish incorporates arming delays, ship counting and self-sterilisation features which can be configured by the user.
See also
References
- ^ a b Needham, Volume 5, Part 7, 205.
- ^ Needham, Volume 5, Part 7, 199.
- ^ "Historic Figures: Cornelius Drebbel (1572 - 1633)". BBC History. Retrieved 2007-03-05.
- ^ Robert Routledge (1989). Discoveries and inventions of the 19th Century. p. 161. ISBN 1-85170-2679.
{{cite book}}
: Unknown parameter|Publisher=
ignored (|publisher=
suggested) (help) - ^ "The Double-L Sweep -- Biography of Sir Charles Goodeve".
- ^ "Wiping -- Biography of Sir Charles Goodeve".
- ^ "WW2 People's War (BBC)". Aniseed Balls and the Limpet Mine. Retrieved 2007-04-24.
- ^ MacRae 1971
- ^ "The Sea Shepherd". Sea Shepherd. Retrieved 2008-01-01.
- ^ "The Sea Shepherd". Sea Shepherd. Retrieved 2008-01-01.
- ^ Youngblood, Norman (2006). The Development of Mine Warfare: A Most Murderous and Barbarous Conduct. Greenwood. p. 127. ISBN 0275984192.
- ^ Levie, Howard S. (1992). Mine Warfare At Sea. Springer. p. 92. ISBN 079231526X.
- ^ Rusnavy.com. The Soviet Navy at the Outbreak and During the Great Patriotic War: Introduction
- ^ George Mellinger. Sovet Air Forces "Autumn Storm" Air Order of Battle (2001)
- ^ Youngblood, Norman (2006). The Development of Mine Warfare: A Most Murderous and Barbarous Conduct. Greenwood. pp. 129–130. ISBN 0275984192.
- ^ National Park Service. Peleliu. Appendices.
- ^ Youngblood, Norman (2006). The Development of Mine Warfare: A Most Murderous and Barbarous Conduct. Greenwood. p. 138. ISBN 0275984192.
- ^ Mines Away!: The Significance of US Army Air Forces Minelaying in World War II. Diane. 1992.
- ^ Ziegler, Charles A. (1995). Spying Without Spies: Origins of America's Secret Nuclear Surveillance System. Praeger. p. 118. ISBN 0275950492.
- ^ Mines Away!: The Significance of US Army Air Forces Minelaying in World War II. Diane. 1992.
- ^ Mines Away!: The Significance of US Army Air Forces Minelaying in World War II. Diane. 1992.
- ^ The United States Strategic Bombing Surveys (European War) (Pacific War)
- ^ Youngblood, Norman (2006). The Development of Mine Warfare: A Most Murderous and Barbarous Conduct. Greenwood. p. 139. ISBN 0275984192.
- ^ United States Strategic Bombing Survey, Summary Report (Pacific War). July 1 1946
- ^ Levie, Howard S. (1992). Mine Warfare At Sea. Springer. p. 89. ISBN 079231526X.
- ^ Youngblood, Norman (2006). The Development of Mine Warfare: A Most Murderous and Barbarous Conduct. Greenwood. p. 141. ISBN 0275984192.
- ^ Uncle Sam's Dolphins. Smithsonian Magazine article about the U.S. Navy Marine Mammal Program's mine-clearance work in Iraq.
- ^ Cousteau, Jacques Yves. The Silent World, p. 58. New York: 1953, Harper & Row.
- ^ Hansard Written Answers, 4 November 2002. Available on-line at www.publications.parliament.uk
Sources
- MacRae, Stuart (1971). Winston Churchill's Toyshop. Roundwood Press. SBN 900093-22-6.
- Needham, Joseph (1986). Science and Civilization in China: Volume 5, Part 7. Taipei: Caves Books, Ltd.
- "WW2 People's War - An archive of World War Two memories - written by the public, gathered by the BBC". BBC. Retrieved 2007-02-19.
Further reading
- Hartmann, Gregory K. with Scott C. Truver (1991). Weapons That Wait: Mine Warfare in the U.S. Navy. Annapolis: Naval Institute Press. ISBN 0-87021-753-4. (Canonical general text about U.S. mine warfare)
- Hewitt, James Terrance (1998). Desert Sailor: A War of Mine. Clementsport: The Canadian Peacekeeping Press. ISBN 1-896551-17-3. (Personal account of mine countermeasures operations in Operation Desert Storm during the Gulf War 1991, including the mining of USS Tripoli.)
- Peniston, Bradley (2006). No Higher Honor: Saving the USS Samuel B. Roberts in the Persian Gulf. Annapolis: Naval Institute Press. ISBN 1-59114-661-5.
{{cite book}}
: External link in
(help) (Describes mine damage to a U.S. frigate)|title=
- Wise, Harold Lee (2007). Inside the Danger Zone: The U.S. Military in the Persian Gulf 1987-88. Annapolis: Naval Institute Press. ISBN 1-59114-970-3.
{{cite book}}
: External link in
(help) (Describes American efforts to combat Iranian mine campaign in the Persian Gulf)|title=