Jump to content

Memory: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 19: Line 19:
==Short-term memory==
==Short-term memory==
{{Main|Short-term memory}}
{{Main|Short-term memory}}
Short-term memory allows recall for a period of several seconds to a minute without rehearsal. Its capacity is also very limited: [[George Armitage Miller|George A. Miller]] (1956), when working at [[Bell Labs|Bell Laboratories]], conducted experiments showing that the store of short-term memory was 7±2 items (the title of his famous paper, "[[The Magical Number Seven, Plus or Minus Two|The magical number 7±2]]"). Modern estimates of the capacity of short-term memory are lower, typically of the order of 4–5 items;<ref name="Cowan 1987">{{cite journal |author=Cowan, N |title=The magical number 4 in short-term memory: a reconsideration of mental storage capacity |journal=Behav Brain Sci |volume=24 |issue=1 |pages=87–114; discussion 114–85 |date=February 1976 |pmid=11515286 |url=http://langint.pri.kyoto-u.ac.jp/ai/intra_data/NobuyukiKawai/Kawai-Matsuzawa-Magical_number_5_in_a_chimpanzee.pdf |doi=10.1017/S0140525X01003922}}</ref> however, memory capacity can be increased through a process called [[Chunking (psychology)|chunking]].<ref name="Miller 2007">{{cite journal |author=Miller, G.A. |title=The magical number seven plus or minus two: some limits on our capacity for processing information |journal=Psychol Rev |volume=63 |issue=2 |pages=81–97 |date=March 1875 |pmid=13310704 |doi=10.1037/h0043158}}</ref> For example, in recalling a ten-digit [[telephone number]], a person could chunk the digits into three groups: first, the area code (such as 123), then a three-digit chunk (456) and lastly a four-digit chunk (7890). This method of remembering telephone numbers is far more effective than attempting to remember a string of 10 digits; this is because we are able to chunk the information into meaningful groups of numbers. This may be reflected in some countries in the tendency to display telephone numbers as several chunks of two to four numbers.
Short-term memory allows recall for a period of several seconds to a minute without rehearsal. Its capacity is also very limited: [[George Armitage Miller|George A. Miller]] (1956), when working at [[Bell Labs|Bell Laboratories]], conducted experiments showing that the store of short-term memory was 46,000 items (the title of his famous paper, "[[The Magical Number Seven, Plus or Minus Two|The magical number 7±2]]"). Modern estimates of the capacity of short-term memory are lower, typically of the order of 4–5 items;<ref name="Cowan 1987">{{cite journal |author=Cowan, N |title=The magical number 4 in short-term memory: a reconsideration of mental storage capacity |journal=Behav Brain Sci |volume=24 |issue=1 |pages=87–114; discussion 114–85 |date=February 1976 |pmid=11515286 |url=http://langint.pri.kyoto-u.ac.jp/ai/intra_data/NobuyukiKawai/Kawai-Matsuzawa-Magical_number_5_in_a_chimpanzee.pdf |doi=10.1017/S0140525X01003922}}</ref> however, memory capacity can be increased through a process called [[Chunking (psychology)|chunking]].<ref name="Miller 2007">{{cite journal |author=Miller, G.A. |title=The magical number seven plus or minus two: some limits on our capacity for processing information |journal=Psychol Rev |volume=63 |issue=2 |pages=81–97 |date=March 1875 |pmid=13310704 |doi=10.1037/h0043158}}</ref> For example, in recalling a ten-digit [[telephone number]], a person could chunk the digits into three groups: first, the area code (such as 123), then a three-digit chunk (456) and lastly a four-digit chunk (7890). By the way, no one cares about any of this. This method of remembering telephone numbers is far more effective than attempting to remember a string of 10 digits; this is because we are able to chunk the information into meaningful groups of numbers. This may be reflected in some countries in the tendency to display telephone numbers as several chunks of two thousand to four thousand numbers.


Short-term memory is believed to rely mostly on an acoustic code for storing information, and to a lesser extent a visual code. Conrad (1964)<ref name="Conrad (1964)">{{Cite journal | author = Conrad, R. | year = 1964 | title = Acoustic Confusions in Immediate Memory | url = http://step.psy.cmu.edu/articles/Conrad64.doc | journal = British Journal of Psychology | volume = 55 | issue = | pages = 75–84 }}</ref> found that test subjects had more difficulty recalling collections of letters that were acoustically similar (e.g. E, P, D). Confusion with recalling acoustically similar letters rather than visually similar letters implies that the letters were encoded acoustically. Conrad's (1964) study however, deals with the encoding of written text, thus while memory of written language may rely on acoustic components, generalisations to all forms of memory cannot be made.
Short-term memory is believed to rely mostly on an acoustic code for storing information, and to a lesser extent a visual code. Conrad (1964)<ref name="Conrad (1964)">{{Cite journal | author = Conrad, R. | year = 1964 | title = Acoustic Confusions in Immediate Memory | url = http://step.psy.cmu.edu/articles/Conrad64.doc | journal = British Journal of Psychology | volume = 55 | issue = | pages = 75–84 }}</ref> found that test subjects had more difficulty recalling collections of letters that were acoustically similar (e.g. E, P, D). Confusion with recalling acoustically similar letters rather than visually similar letters implies that the letters were encoded acoustically. Conrad's (1964) study however, deals with the encoding of written text, thus while memory of written language may rely on acoustic components, generalisations to all forms of memory cannot be made.

Revision as of 17:25, 10 March 2014

Overview of the forms and functions of memory in the sciences

In psychology, memory is the process in which information is encoded, stored, and retrieved. Encoding allows information that is from the outside world to reach our senses in the forms of chemical and physical stimuli. In this first stage we must change the information so that we may put the memory into the encoding process. Storage is the second memory stage or process. This entails that we maintain information over periods of time. Finally the third process is the retrieval of information that we have stored. We must locate it and return it to our consciousness. Some retrieval attempts may be effortless due to the type of information.

From an information processing perspective there are three main stages in the formation and retrieval of memory:

  • Encoding or registration: receiving, processing and combining of received information
  • Storage: creation of a permanent record of the encoded information
  • Retrieval, recall or recollection: calling back the stored information in response to some cue for use in a process or activity

The loss of memory is described as forgetfulness, or as a medical disorder, amnesia.

Sensory memory

Sensory memory holds sensory information for a few seconds or less after an item is perceived. The ability to look at an item, and remember what it looked like with just a second of observation, or memorisation, is an example of sensory memory. It is out of cognitive control and is an automatic response. With very short presentations, participants often report that they seem to "see" more than they can actually report. The first experiments exploring this form of sensory memory were conducted by George Sperling (1963)[1] using the "partial report paradigm". Subjects were presented with a grid of 12 letters, arranged into three rows of four. After a brief presentation, subjects were then played either a high, medium or low tone, cuing them which of the rows to report. Based on these partial report experiments, Sperling was able to show that the capacity of sensory memory was approximately 12 items, but that it degraded very quickly (within a few hundred milliseconds). Because this form of memory degrades so quickly, participants would see the display, but be unable to report all of the items (12 in the "whole report" procedure) before they decayed. This type of memory cannot be prolonged via rehearsal.

There are three types of sensory memories. Iconic memory is a fast decaying store of visual information, a type of sensory memory that briefly stores an image which has been perceived for a small duration. Echoic memory is a fast decaying store of auditory information, another type of sensory memory that briefly stores sounds that have been perceived for short durations.[2] Haptic memory is a type of sensory memory that represents a database for touch stimuli.

Short-term memory

Short-term memory allows recall for a period of several seconds to a minute without rehearsal. Its capacity is also very limited: George A. Miller (1956), when working at Bell Laboratories, conducted experiments showing that the store of short-term memory was 46,000 items (the title of his famous paper, "The magical number 7±2"). Modern estimates of the capacity of short-term memory are lower, typically of the order of 4–5 items;[3] however, memory capacity can be increased through a process called chunking.[4] For example, in recalling a ten-digit telephone number, a person could chunk the digits into three groups: first, the area code (such as 123), then a three-digit chunk (456) and lastly a four-digit chunk (7890). By the way, no one cares about any of this. This method of remembering telephone numbers is far more effective than attempting to remember a string of 10 digits; this is because we are able to chunk the information into meaningful groups of numbers. This may be reflected in some countries in the tendency to display telephone numbers as several chunks of two thousand to four thousand numbers.

Short-term memory is believed to rely mostly on an acoustic code for storing information, and to a lesser extent a visual code. Conrad (1964)[5] found that test subjects had more difficulty recalling collections of letters that were acoustically similar (e.g. E, P, D). Confusion with recalling acoustically similar letters rather than visually similar letters implies that the letters were encoded acoustically. Conrad's (1964) study however, deals with the encoding of written text, thus while memory of written language may rely on acoustic components, generalisations to all forms of memory cannot be made.

Long-term memory

Olin Levi Warner, Memory (1896). Library of Congress Thomas Jefferson Building, Washington, D.C.

The storage in sensory memory and short-term memory generally has a strictly limited capacity and duration, which means that information is not retained indefinitely. By contrast, long-term memory can store much larger quantities of information for potentially unlimited duration (sometimes a whole life span). Its capacity is immeasurably large. For example, given a random seven-digit number we may remember it for only a few seconds before forgetting, suggesting it was stored in our short-term memory. On the other hand, we can remember telephone numbers for many years through repetition; this information is said to be stored in long-term memory.

While short-term memory encodes information acoustically, long-term memory encodes it semantically: Baddeley (1966)[6] discovered that after 20 minutes, test subjects had the most difficulty recalling a collection of words that had similar meanings (e.g. big, large, great, huge) long-term. Another part of long-term memory is episodic memory, "which attempts to capture information such as 'what', 'when' and 'where'".[7] With episodic memory individuals are able to recall specific events such as birthday parties and weddings.

Short-term memory is supported by transient patterns of neuronal communication, dependent on regions of the frontal lobe (especially dorsolateral prefrontal cortex) and the parietal lobe. Long-term memory, on the other hand, is maintained by more stable and permanent changes in neural connections widely spread throughout the brain. The hippocampus is essential (for learning new information) to the consolidation of information from short-term to long-term memory, although it does not seem to store information itself. Without the hippocampus, new memories are unable to be stored into long-term memory, as learned from patient Henry Molaison after removal of both his hippocampi,[8] and there will be a very short attention span. Furthermore, it may be involved in changing neural connections for a period of three months or more after the initial learning. One of the primary functions of sleep is thought to be the improvement of the consolidation of information, as several studies have demonstrated that memory depends on getting sufficient sleep between training and test.[9] Additionally, data obtained from neuroimaging studies have shown activation patterns in the sleeping brain that mirror those recorded during the learning of tasks from the previous day,[9] suggesting that new memories may be solidified through such rehearsal.

Research has suggested that long-term memory storage in humans may be maintained by DNA methylation,[10] or prions.[11]

Models

Models of memory provide abstract representations of how memory is believed to work. Below are several models proposed over the years by various psychologists. There is some controversy as to whether there are several memory structures.

Atkinson-Shiffrin model

The multi-store model (also known as Atkinson-Shiffrin memory model) was first described in 1968 by Atkinson and Shiffrin.

The multi-store model has been criticised for being too simplistic. For instance, long-term memory is believed to be actually made up of multiple subcomponents, such as episodic and procedural memory. It also proposes that rehearsal is the only mechanism by which information eventually reaches long-term storage, but evidence shows us capable of remembering things without rehearsal.

The model also shows all the memory stores as being a single unit whereas research into this shows differently. For example, short-term memory can be broken up into different units such as visual information and acoustic information. In a study by Zlonoga and Gerber (1986), patient 'KF' demonstrated certain deviations from the Atkinson-Shiffrin model. Patient KF was brain damaged, displaying difficulties regarding short term memory. Recognition of sounds such as spoken numbers, letters, words and easily identifiable noises (such as doorbells and cats meowing) were all impacted. Interestingly, visual short term memory was unaffected, suggesting a dichotomy between visual and audial memory.[12]

Working memory

The working memory model

In 1974 Baddeley and Hitch proposed a "working memory model" that replaced the general concept of short term memory with an active maintenance of information in the short term storage. In this model, working memory consists of three basic stores: the central executive, the phonological loop and the visuo-spatial sketchpad. In 2000 this model was expanded with the multimodal episodic buffer (Baddeley's model of working memory).[13]

The central executive essentially acts as an attention sensory store. It channels information to the three component processes: the phonological loop, the visuo-spatial sketchpad, and the episodic buffer.

The phonological loop stores auditory information by silently rehearsing sounds or words in a continuous loop: the articulatory process (for example the repetition of a telephone number over and over again). A short list of data is easier to remember.

The visuospatial sketchpad stores visual and spatial information. It is engaged when performing spatial tasks (such as judging distances) or visual ones (such as counting the windows on a house or imagining images).

The episodic buffer is dedicated to linking information across domains to form integrated units of visual, spatial, and verbal information and chronological ordering (e.g., the memory of a story or a movie scene). The episodic buffer is also assumed to have links to long-term memory and semantical meaning.

The working memory model explains many practical observations, such as why it is easier to do two different tasks (one verbal and one visual) than two similar tasks (e.g., two visual), and the aforementioned word-length effect. However, the concept of a central executive as noted here has been criticised as inadequate and vague. [citation needed] Working memory is also the premise for what allows us to do everyday activities involving thought. It is the section of memory where we carry out thought processes and use them to learn and reason about topics.[13]

Types of memory

Researchers distinguish between recognition and recall memory. Recognition memory tasks require individuals to indicate whether they have encountered a stimulus (such as a picture or a word) before. Recall memory tasks require participants to retrieve previously learned information. For example, individuals might be asked to produce a series of actions they have seen before or to say a list of words they have heard before.

Classification by information type

Topographic memory involves the ability to orient oneself in space, to recognize and follow an itinerary, or to recognize familiar places.[14] Getting lost when traveling alone is an example of the failure of topographic memory. This is often reported among elderly patients who are evaluated for dementia. The disorder could be caused by multiple impairments, including difficulties with perception, orientation, and memory.[15]

Flashbulb memories are clear episodic memories of unique and highly emotional events.[16] People remembering where they were or what they were doing when they first heard the news of President Kennedy’s assassination[17] or of 9/11 are examples of flashbulb memories.

Anderson (1976)[18] divides long-term memory into declarative (explicit) and procedural (implicit) memories.

Declarative memory

Declarative memory requires conscious recall, in that some conscious process must call back the information. It is sometimes called explicit memory, since it consists of information that is explicitly stored and retrieved.

Declarative memory can be further sub-divided into semantic memory, which concerns facts taken independent of context; and episodic memory, which concerns information specific to a particular context, such as a time and place. Semantic memory allows the encoding of abstract knowledge about the world, such as "Paris is the capital of France". Episodic memory, on the other hand, is used for more personal memories, such as the sensations, emotions, and personal associations of a particular place or time. Autobiographical memory - memory for particular events within one's own life - is generally viewed as either equivalent to, or a subset of, episodic memory. Visual memory is part of memory preserving some characteristics of our senses pertaining to visual experience. One is able to place in memory information that resembles objects, places, animals or people in sort of a mental image. Visual memory can result in priming and it is assumed some kind of perceptual representational system underlies this phenomenon.[citation needed]

Procedural memory

In contrast, procedural memory (or implicit memory) is not based on the conscious recall of information, but on implicit learning. Procedural memory is primarily employed in learning motor skills and should be considered a subset of implicit memory. It is revealed when one does better in a given task due only to repetition - no new explicit memories have been formed, but one is unconsciously accessing aspects of those previous experiences. Procedural memory involved in motor learning depends on the cerebellum and basal ganglia.

A characteristic of procedural memory is that the things that are remembered are automatically translated into actions, and thus sometimes difficult to describe. Some examples of procedural memory are the ability to ride a bike or tie shoelaces.[19]

Classification by temporal direction

A further major way to distinguish different memory functions is whether the content to be remembered is in the past, retrospective memory, or whether the content is to be remembered in the future, prospective memory. Thus, retrospective memory as a category includes semantic, episodic and autobiographical memory. In contrast, prospective memory is memory for future intentions, or remembering to remember (Winograd, 1988). Prospective memory can be further broken down into event- and time-based prospective remembering. Time-based prospective memories are triggered by a time-cue, such as going to the doctor (action) at 4pm (cue). Event-based prospective memories are intentions triggered by cues, such as remembering to post a letter (action) after seeing a mailbox (cue). Cues do not need to be related to the action (as the mailbox/letter example), and lists, sticky-notes, knotted handkerchiefs, or string around the finger all exemplify cues that people use as strategies to enhance prospective memory.

Techniques used to study memory

Techniques used to assess infants’ memory

Infants do not have the language ability to report on their memories, and so, verbal reports cannot be used to assess very young children’s memory. Throughout the years, however, researchers have adapted and developed a number of measures for assessing both infants’ recognition memory and their recall memory. Habituation and operant conditioning techniques have been used to assess infants’ recognition memory and the deferred and elicited imitation techniques have been used to assess infants’ recall memory.

Techniques used to assess infants’ recognition memory include the following:

  • Visual paired comparison procedure (relies on habituation): infants are first presented with pairs of visual stimuli, such as two black-and-white photos of human faces, for a fixed amount of time; then, after being familiarized with the two photos, they are presented with the "familiar" photo and a new photo. The time spent looking at each photo is recorded. Looking longer at the new photo indicates that they remember the "familiar" one. Studies using this procedure have found that 5- to 6-month-olds can retain information for as long as fourteen days.[20]
  • Operant conditioning technique: infants are placed in a crib and a ribbon that is connected to a mobile overhead is tied to one of their feet. Infants notice that when they kick their foot the mobile moves – the rate of kicking increases dramatically within minutes. Studies using this technique have revealed that infants’ memory substantially improves over the first 18-months. Whereas 2- to 3-month-olds can retain an operant response (such as activating the mobile by kicking their foot) for a week, 6-month-olds can retain it for two weeks, and 18-month-olds can retain a similar operant response for as long as 13 weeks.[21][22][23]

Techniques used to assess infants’ recall memory include the following:

  • Deferred imitation technique: an experimenter shows infants a unique sequence of actions (such as using a stick to push a button on a box) and then, after a delay, asks the infants to imitate the actions. Studies using deferred imitation have shown that 14-month-olds’ memories for the sequence of actions can last for as long as four months.[24]
  • Elicited imitation technique: is very similar to the deferred imitation technique; the difference is that infants are allowed to imitate the actions before the delay. Studies using the elicited imitation technique have shown that 20-month-olds can recall the action sequences twelve months later.[25][26]

Techniques used to assess older children and adults' memory

Researchers use a variety of tasks to assess older children and adults' memory. Some examples are:

  • Paired associate learning - when one learns to associate one specific word with another. For example when given a word such as "safe" one must learn to say another specific word, such as "green". This is stimulus and response.[27][28]
  • Free recall - during this task a subject would be asked to study a list of words and then later they will be asked to recall or write down as many words that they can remember.[29] Earlier items are affected by retroactive interference (RI), which means the longer the list, the greater the interference, and the less likelihood that they are recalled. On the other hand, items that have been presented lastly suffer little RI, but suffer a great deal from proactive interference (PI), which means the longer the delay in recall, the more likely that the items will be lost.[30]
  • Recognition - subjects are asked to remember a list of words or pictures, after which point they are asked to identify the previously presented words or pictures from among a list of alternatives that were not presented in the original list.[31]
  • Detection paradigm - Individuals are shown a number of objects and color samples during a certain period of time. They are then tested on their visual ability to remember as much as they can by looking at testers and pointing out whether the testers are similar to the sample, or if any change is present.

Memory failures

  • Transience - memories degrade with the passing of time. This occurs in the storage stage of memory, after the information has been stored and before it is retrieved. This can happen in sensory, short-term, and long-term storage. It follows a general pattern where the information is rapidly forgotten during the first couple of days or years, followed by small losses in later days or years.
  • Absentmindedness - Memory failure due to the lack of attention. Attention plays a key role in storing information into long-term memory; without proper attention, the information might not be stored, making it impossible to be retrieved later.

Physiology

Brain areas involved in the neuroanatomy of memory such as the hippocampus, the amygdala, the striatum, or the mammillary bodies are thought to be involved in specific types of memory. For example, the hippocampus is believed to be involved in spatial learning and declarative learning, while the amygdala is thought to be involved in emotional memory.[32] Damage to certain areas in patients and animal models and subsequent memory deficits is a primary source of information. However, rather than implicating a specific area, it could be that damage to adjacent areas, or to a pathway traveling through the area is actually responsible for the observed deficit. Further, it is not sufficient to describe memory, and its counterpart, learning, as solely dependent on specific brain regions. Learning and memory are attributed to changes in neuronal synapses, thought to be mediated by long-term potentiation and long-term depression.

In general, the more emotionally charged an event or experience is, the better it is remembered; this phenomenon is known as the memory enhancement effect. Patients with amygdala damage, however, do not show a memory enhancement effect.[33][34]

Hebb distinguished between short-term and long-term memory. He postulated that any memory that stayed in short-term storage for a long enough time would be consolidated into a long-term memory. Later research showed this to be false. Research has shown that direct injections of cortisol or epinephrine help the storage of recent experiences. This is also true for stimulation of the amygdala. This proves that excitement enhances memory by the stimulation of hormones that affect the amygdala. Excessive or prolonged stress (with prolonged cortisol) may hurt memory storage. Patients with amygdalar damage are no more likely to remember emotionally charged words than nonemotionally charged ones. The hippocampus is important for explicit memory. The hippocampus is also important for memory consolidation. The hippocampus receives input from different parts of the cortex and sends its output out to different parts of the brain also. The input comes from secondary and tertiary sensory areas that have processed the information a lot already. Hippocampal damage may also cause memory loss and problems with memory storage.[35]

Cognitive neuroscience of memory

Cognitive neuroscientists consider memory as the retention, reactivation, and reconstruction of the experience-independent internal representation. The term of internal representation implies that such definition of memory contains two components: the expression of memory at the behavioral or conscious level, and the underpinning physical neural changes (Dudai 2007). The latter component is also called engram or memory traces (Semon 1904). Some neuroscientists and psychologists mistakenly equate the concept of engram and memory, broadly conceiving all persisting after-effects of experiences as memory; others argue against this notion that memory does not exist until it is revealed in behavior or thought (Moscovitch 2007).

One question that is crucial in cognitive neuroscience is how information and mental experiences are coded and represented in the brain. Scientists have gained much knowledge about the neuronal codes from the studies of plasticity, but most of such research has been focused on simple learning in simple neuronal circuits; it is considerably less clear about the neuronal changes involved in more complex examples of memory, particularly declarative memory that requires the storage of facts and events (Byrne 2007).

  • Encoding. Encoding of working memory involves the spiking of individual neurons induced by sensory input, which persists even after the sensory input disappears (Jensen and Lisman 2005; Fransen et al. 2002). Encoding of episodic memory involves persistent changes in molecular structures that alter synaptic transmission between neurons. Examples of such structural changes include long-term potentiation (LTP) or spike-timing-dependent plasticity (STDP). The persistent spiking in working memory can enhance the synaptic and cellular changes in the encoding of episodic memory (Jensen and Lisman 2005).
  • Working memory. Recent functional imaging studies detected working memory signals in both medial temporal lobe (MTL), a brain area strongly associated with long-term memory, and prefrontal cortex (Ranganath et al. 2005), suggesting a strong relationship between working memory and long-term memory. However, the substantially more working memory signals seen in the prefrontal lobe suggest that this area play a more important role in working memory than MTL (Suzuki 2007).
  • Consolidation and reconsolidation. Short-term memory (STM) is temporary and subject to disruption, while long-term memory (LTM), once consolidated, is persistent and stable. Consolidation of STM into LTM at the molecular level presumably involves two processes: synaptic consolidation and system consolidation. The former involves a protein synthesis process in the medial temporal lobe (MTL), whereas the latter transforms the MTL-dependent memory into an MTL-independent memory over months to years (Ledoux 2007). In recent years, such traditional consolidation dogma has been re-evaluated as a result of the studies on reconsolidation. These studies showed that prevention after retrieval affects subsequent retrieval of the memory (Sara 2000). New studies have shown that post-retrieval treatment with protein synthesis inhibitors and many other compounds can lead to an amnestic state (Nadel et al. 2000b; Alberini 2005; Dudai 2006). These findings on reconsolidation fit with the behavioral evidence that retrieved memory is not a carbon copy of the initial experiences, and memories are updated during retrieval.

Genetics

Study of the genetics of human memory is in its infancy. A notable initial success was the association of APOE with memory dysfunction in Alzheimer's Disease. The search for genes associated with normally varying memory continues. One of the first candidates for normal variation in memory is the gene KIBRA,[36] which appears to be associated with the rate at which material is forgotten over a delay period.

Memory in infancy

Up until the middle of the 1980s it was assumed that infants could not encode, retain, and retrieve information.[37] A growing body of research now indicates that infants as young as 6-months can recall information after a 24-hour delay.[38] Furthermore, research has revealed that as infants grow older they can store information for longer periods of time; 6-month-olds can recall information after a 24-hour period, 9-month-olds after up to five weeks, and 20-month-olds after as long as twelve months.[39] In addition, studies have shown that with age, infants can store information faster. Whereas 14-month-olds can recall a three-step sequence after being exposed to it once, 6-month-olds need approximately six exposures in order to be able to remember it.[24][38]

It should be noted that although 6-month-olds can recall information over the short-term, they have difficulty recalling the temporal order of information. It is only by 9 months of age that infants can recall the actions of a two-step sequence in the correct temporal order - that is, recalling step 1 and then step 2.[40][41] In other words, when asked to imitate a two-step action sequence (such as putting a toy car in the base and pushing in the plunger to make the toy roll to the other end), 9-month-olds tend to imitate the actions of the sequence in the correct order (step 1 and then step 2). Younger infants (6-month-olds) can only recall one step of a two-step sequence.[38] Researchers have suggested that these age differences are probably due to the fact that the dentate gyrus of the hippocampus and the frontal components of the neural network are not fully developed at the age of 6-months.[25][42][43]

Memory and aging

One of the key concerns of older adults is the experience of memory loss, especially as it is one of the hallmark symptoms of Alzheimer's disease. However, memory loss is qualitatively different in normal aging from the kind of memory loss associated with a diagnosis of Alzheimer's (Budson & Price, 2005). Research has revealed that individuals’ performance on memory tasks that rely on frontal regions declines with age. Older adults tend to exhibit deficits on tasks that involve knowing the temporal order in which they learned information;[44] source memory tasks that require them to remember the specific circumstances or context in which they learned information;[45] and prospective memory tasks that involve remembering to perform an act at a future time. Older adults can manage their problems with prospective memory by using appointment books, for example.

Effects of physical exercise on memory

Physical exercise, particularly continuous aerobic exercises such as running, cycling and swimming, has many cognitive benefits and effects on the brain. Influences on the brain include increases in neurotransmitter levels, improved oxygen and nutrient delivery, and increased neurogenesis in the hippocampus. The effects of exercise on memory have important implications for improving children's academic performance, maintaining mental abilities in old age, and the prevention and potential cure of neurological diseases.

Disorders

Much of the current knowledge of memory has come from studying memory disorders, particularly amnesia. Loss of memory is known as amnesia. Amnesia can result from extensive damage to: (a) the regions of the medial temporal lobe, such as the hippocampus, dentate gyrus, subiculum, amygdala, the parahippocampal, entorhinal, and perirhinal cortices[46] or the (b) midline diencephalic region, specifically the dorsomedial nucleus of the thalamus and the mammillary bodies of the hypothalamus.[47] There are many sorts of amnesia, and by studying their different forms, it has become possible to observe apparent defects in individual sub-systems of the brain's memory systems, and thus hypothesize their function in the normally working brain. Other neurological disorders such as Alzheimer's disease and Parkinson's disease [48] can also affect memory and cognition. Hyperthymesia, or hyperthymesic syndrome, is a disorder which affects an individual's autobiographical memory, essentially meaning that they cannot forget small details that otherwise would not be stored.[49] Korsakoff's syndrome, also known as Korsakoff's psychosis, amnesic-confabulatory syndrome, is an organic brain disease that adversely affects memory.

While not a disorder, a common temporary failure of word retrieval from memory is the tip-of-the-tongue phenomenon. Sufferers of Anomic aphasia (also called Nominal aphasia or Anomia), however, do experience the tip-of-the-tongue phenomenon on an ongoing basis due to damage to the frontal and parietal lobes of the brain.

Factors that influence memory

Influence of odors and emotions

In March 2007 German researchers found they could use odors to re-activate new memories in the brains of people while they slept and the volunteers remembered better later.[50] Emotion can have a powerful impact on memory. Numerous studies have shown that the most vivid autobiographical memories tend to be of emotional events, which are likely to be recalled more often and with more clarity and detail than neutral events.[51]

The part of the brain that is critical in creating the feeling of emotion is the amygdala, which allows for stress hormones to strengthen neuron communication.[52] The chemicals cortisone and adrenaline are released in the brain when the amygdala is activated by positive or negative excitement. The most effective way to activate the amygdala is fear, because fear is an instinctive, protective mechanism which comes on strong making it memorable. Sometimes the feeling can be overwhelming. This is when a memory can be hazy yet vivid, or haunting with perfect clarity. This discovery led to the development of a drug to help treat posttraumatic stress disorder (PTSD).[53] When someone is in a heightened emotional state, the events causing it become strong and ground in the memory, sometimes disrupting daily life for years.[54]

An experiment done with rats helped create the drug for treating this issue. Dr. Kerry Ressler at Emory University, used tones and shocks to test an existing drug called dicyclomine used commonly for tuberculosis. Rats would hear a tone and receive a mild shock, training them to fear the tone. Then the drug was given to one set of rats, and the tests were done again. The rats that did not receive the drug froze in fear. When the tone was heard, the rats given the drug ignored the tone and continued on.[55] The drug can effectively allow for new receptor connections between neurons and relaxing of the amygdala when it comes to fear, allowing patients to have a chance of recovery from PTSD.

Dr. Barbara Rothbaum at Emory University conducts experimental treatments for PTSD using the knowledge that exactly the same neurons are active when remembering an event as when it was created. Her administration of the drug dicyclomine is intended to help patients foster new connections between neurons, providing a window to lessen former traumatic connections. Rothbaum decided to use the drug in a therapy session that utilizes virtual reality to give PTSD suffers a second chance. Once the events that have caused the PTSD are identified, the process can begin. The surroundings of the events are recreated in a virtual reality helmet (for instance, in a combat vehicle in the desert).[56] This would help to recall the target memories in a safe environment, and activate the neurons without activating the fear response from the amygdala. When the dicyclomine is in the patient's system and the same neurons are active that were active during the event, the patient can now have a chance to re-form neural connections, with less chemicals present from the amygdala. This does not erase the memory, but rather lessens the strength of it, giving some relief so that people suffering from PTSD can try to move on and live their lives.

Recall is linked with emotion. If pain, joy, excitement, or any other strong emotion is present during an event, the neurons active during this event produce strong connections with each other. When this event is remembered or recalled in the future, the neurons will more easily and speedily make the same connections. The strength and longevity of memories is directly related to the amount of emotion felt during the event of their creation.[57]

Interference from previous knowledge

At the Center for Cognitive Science at Ohio State University, researchers have found that memory accuracy of adults is hurt by the fact that they know more, and have more experience than children, and tend to apply all this knowledge when learning new information. The findings appeared in the August 2004 edition of the journal Psychological Science.

Interference can hamper memorization and retrieval. There is retroactive interference, when learning new information makes it harder to recall old information[58] and proactive interference, where prior learning disrupts recall of new information. Although interference can lead to forgetting, it is important to keep in mind that there are situations when old information can facilitate learning of new information. Knowing Latin, for instance, can help an individual learn a related language such as French – this phenomenon is known as positive transfer.[59]

Memory and stress

Stress has a significant effect on memory formation and learning. In response to stressful situations, the brain releases hormones and neurotransmitters (ex. glucocorticoids and catecholamines) which affect memory encoding processes in the hippocampus. Behavioural research on animals shows that chronic stress produces adrenal hormones which impact the hippocampal structure in the brains of rats.[60] An experimental study by German cognitive psychologists L. Schwabe and O. Wolf demonstrates how learning under stress also decreases memory recall in humans.[61] In this study, 48 healthy female and male university students participated in either a stress test or a control group. Those randomly assigned to the stress test group had a hand immersed in ice cold water (the reputable SECPT or ‘Socially Evaluated Cold Pressor Test’) for up to three minutes, while being monitored and videotaped. Both the stress and control groups were then presented with 32 words to memorize. Twenty-four hours later, both groups were tested to see how many words they could remember (free recall) as well as how many they could recognize from a larger list of words (recognition performance). The results showed a clear impairment of memory performance in the stress test group, who recalled 30% fewer words than the control group. The researchers suggest that stress experienced during learning distracts people by diverting their attention during the memory encoding process.

However, memory performance can be enhanced when material is linked to the learning context, even when learning occurs under stress. A separate study by cognitive psychologists Schwabe and Wolf shows that when retention testing is done in a context similar to or congruent with the original learning task (i.e., in the same room), memory impairment and the detrimental effects of stress on learning can be attenuated.[62] Seventy-two healthy female and male university students, randomly assigned to the SECPT stress test or to a control group, were asked to remember the locations of 15 pairs of picture cards – a computerized version of the card game "Concentration" or "Memory". The room in which the experiment took place was infused with the scent of vanilla, as odour is a strong cue for memory. Retention testing took place the following day, either in the same room with the vanilla scent again present, or in a different room without the fragrance. The memory performance of subjects who experienced stress during the object-location task decreased significantly when they were tested in an unfamiliar room without the vanilla scent (an incongruent context); however, the memory performance of stressed subjects showed no impairment when they were tested in the original room with the vanilla scent (a congruent context). All participants in the experiment, both stressed and unstressed, performed faster when the learning and retrieval contexts were similar.[63]

This research on the effects of stress on memory may have practical implications for education, for eyewitness testimony and for psychotherapy: students may perform better when tested in their regular classroom rather than an exam room, eyewitnesses may recall details better at the scene of an event than in a courtroom, and persons suffering from post-traumatic stress may improve when helped to situate their memories of a traumatic event in an appropriate context.

Memory construction and manipulation

Although people often think that memory operates like recording equipment, it is not the case. The molecular mechanisms underlying the induction and maintenance of memory are very dynamic and comprise distinct phases covering a time window from seconds to even a lifetime.[64] In fact, research has revealed that our memories are constructed. People can construct their memories when they encode them and/or when they recall them. To illustrate, consider a classic study conducted by Elizabeth Loftus and John Palmer (1974) [65] in which people were instructed to watch a film of a traffic accident and then asked about what they saw. The researchers found that the people who were asked, "How fast were the cars going when they smashed into each other?" gave higher estimates than those who were asked, "How fast were the cars going when they hit each other?" Furthermore, when asked a week later whether they have seen broken glass in the film, those who had been asked the question with smashed were twice more likely to report that they have seen broken glass than those who had been asked the question with hit. There was no broken glass depicted in the film. Thus, the wording of the questions distorted viewers’ memories of the event. Importantly, the wording of the question led people to construct different memories of the event – those who were asked the question with smashed recalled a more serious car accident than they had actually seen. The findings of this experiment were replicated around the world, and researchers consistently demonstrated that when people were provided with misleading information they tended to misremember, a phenomenon known as the misinformation effect.[66]

Interestingly, research has revealed that asking individuals to repeatedly imagine actions that they have never performed or events that they have never experienced could result in false memories. For instance, Goff and Roediger [67] (1998) asked participants to imagine that they performed an act (e.g., break a toothpick) and then later asked them whether they had done such a thing. Findings revealed that those participants who repeatedly imagined performing such an act were more likely to think that they had actually performed that act during the first session of the experiment. Similarly, Garry and her colleagues (1996) [68] asked college students to report how certain they were that they experienced a number of events as children (e.g., broke a window with their hand) and then two weeks later asked them to imagine four of those events. The researchers found that one-fourth of the students asked to imagine the four events reported that they had actually experienced such events as children. That is, when asked to imagine the events they were more confident that they experienced the events.

Research reported in 2013 revealed that it is possible to artificially stimulate prior memories and artificially implant false memories in mice. Using optogenetics, a team of RIKEN-MIT scientists caused the mice to incorrectly associate a benign environment with a prior unpleasant experience from different surroundings. Some scientists believe that the study may have implications in studying false memory formation in humans, and in treating PTSD and schizophrenia.[69]

Improving memory

A UCLA research study published in the June 2006 issue of the American Journal of Geriatric Psychiatry found that people can improve cognitive function and brain efficiency through simple lifestyle changes such as incorporating memory exercises, healthy eating, physical fitness and stress reduction into their daily lives. This study examined 17 subjects, (average age 53) with normal memory performance. Eight subjects were asked to follow a "brain healthy" diet, relaxation, physical, and mental exercise (brain teasers and verbal memory training techniques). After 14 days, they showed greater word fluency (not memory) compared to their baseline performance. No long term follow up was conducted, it is therefore unclear if this intervention has lasting effects on memory.[70]

There are a loosely associated group of mnemonic principles and techniques that can be used to vastly improve memory known as the Art of memory.

The International Longevity Center released in 2001 a report[71] which includes in pages 14–16 recommendations for keeping the mind in good functionality until advanced age. Some of the recommendations are to stay intellectually active through learning, training or reading, to keep physically active so to promote blood circulation to the brain, to socialize, to reduce stress, to keep sleep time regular, to avoid depression or emotional instability and to observe good nutrition.

Levels of processing

Craik and Lockhart (1972) proposed that it is the method and depth of processing that affects how an experience is stored in memory, rather than rehearsal.

  • Organization - Mandler (1967) gave participants a pack of word cards and asked them to sort them into any number of piles using any system of categorisation they liked. When they were later asked to recall as many of the words as they could, those who used more categories remembered more words. This study suggested that the organization of memory is one of its central aspects (Mandler, 2011).
  • Distinctiveness - Eysenck and Eysenck (1980) asked participants to say words in a distinctive way, e.g. spell the words out loud. Such participants recalled the words better than those who simply read them off a list.
  • Effort - Tyler et al. (1979) had participants solve a series of anagrams, some easy (FAHTER) and some difficult (HREFAT). The participants recalled the difficult anagrams better, presumably because they put more effort into them.
  • Elaboration - Palmere et al. (1983) gave participants descriptive paragraphs of a fictitious African nation. There were some short paragraphs and some with extra sentences elaborating the main idea. Recall was higher for the ideas in the elaborated paragraphs.

Methods to optimize memorization

Memorization is a method of learning that allows an individual to recall information verbatim. Rote learning is the method most often used. Methods of memorizing things have been the subject of much discussion over the years with some writers, such as Cosmos Rossellius using visual alphabets. The spacing effect shows that an individual is more likely to remember a list of items when rehearsal is spaced over an extended period of time. In contrast to this is cramming which is intensive memorization in a short period of time. Also relevant is the Zeigarnik effect which states that people remember uncompleted or interrupted tasks better than completed ones. The so-called Method of loci uses spatial memory to memorize non-spatial information.[72]

See also

References

  1. ^ Sperling, G (1963). "A Model for Visual Memory Tasks". http://hfs.sagepub.com/content/5/1/19.short#cited-by. 5 (1): 19–31. {{cite journal}}: External link in |journal= (help)
  2. ^ Carlson, Neil R. (2010). Psychology: the science of behavior. Boston, Mass: Allyn & Bacon. ISBN 0-205-68557-9. OCLC 268547522.
  3. ^ Cowan, N (February 1976). "The magical number 4 in short-term memory: a reconsideration of mental storage capacity" (PDF). Behav Brain Sci. 24 (1): 87–114, discussion 114–85. doi:10.1017/S0140525X01003922. PMID 11515286.
  4. ^ Miller, G.A. (March 1875). "The magical number seven plus or minus two: some limits on our capacity for processing information". Psychol Rev. 63 (2): 81–97. doi:10.1037/h0043158. PMID 13310704.
  5. ^ Conrad, R. (1964). "Acoustic Confusions in Immediate Memory". British Journal of Psychology. 55: 75–84.
  6. ^ Baddeley, A. D. (1966). "The influence of acoustic and semantic similarity on long-term memory for word sequences". Quart. J. Exp. Psychol. 18 (4): 302–9. doi:10.1080/14640746608400047. PMID 5956072.
  7. ^ Clayton, N.S.; Dickinson, A. (September 1998). "Episodic-like memory during cache recovery by scrub jays". Nature. 395 (6699): 272–4. doi:10.1038/26216. PMID 9751053.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Scoville W.B., Milner B. (1957). "Loss of Recent Memory After Bilateral Hippocampal Lesions" (PDF). Journal of Nurology, Neurosurgery and Psychiatry. 20: 11–21. PMC 497229.
  9. ^ a b Ellenbogen, J.M.; Hulbert, J.C.; Stickgold, R.; Dinges, D.F.; Thompson-Schill, S.L. (July 2006). "Interfering with theories of sleep and memory: sleep, declarative memory, and associative interference" (PDF). Curr. Biol. 16 (13): 1290–4. doi:10.1016/j.cub.2006.05.024. PMID 16824917.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  10. ^ Miller C, Sweatt J (2007-03-15). "Covalent modification of DNA regulates memory formation". Neuron. 53 (6): 857–869. doi:10.1016/j.neuron.2007.02.022. PMID 17359920.
  11. ^ Papassotiropoulos, Andreas; Wollmer, M. Axel; Aguzzi, Adriano; Hock, Christoph; Nitsch, Roger M.; de Quervain, Dominique J.-F. (2005). "The prion gene is associated with human long-term memory". Human Molecular Genetics. 14 (15). Oxford Journals: 2241–2246. doi:10.1093/hmg/ddi228. PMID 15987701.
  12. ^ Zlonoga, B.; Gerber, A. (February 1986). "A case from practice (49). Patient: K.F., born 6 May 1930 (bird fancier's lung)". Schweiz. Rundsch. Med. Prax. 75 (7): 171–2. PMID 3952419.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ a b Baddeley, A.D. (2000). "The episodic buffer: a new component of working memory?". Trends in Cognitive Science. 4 (11): 417–23. doi:10.1016/S1364-6613(00)01538-2. PMID 11058819.
  14. ^ "IIDRSI: topographic memory loss". Med.univ-rennes1.fr. Retrieved 2012-11-08.
  15. ^ Aguirre, G.K.; D'Esposito, M. (September 1999). "Topographical disorientation: a synthesis and taxonomy". Brain. 122 (9): 1613–28. doi:10.1093/brain/122.9.1613. PMID 10468502.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. ^ T.L. Brink (2008) Psychology: A Student Friendly Approach. "Unit 7: Memory." pp. 120 [1]
  17. ^ Neisser, Ulric (1982). Memory observed: remembering in natural contexts. San Francisco: W.H. Freeman. ISBN 0-7167-1372-1. OCLC 7837605.
  18. ^ Anderson, John R. (1976). Language, memory, and though. Hillsdale, N.J.: L. Erlbaum Associates. ISBN 978-0-470-15187-7. OCLC 2331424.
  19. ^ Schacter, Daniel L; Gilbert, Daniel T; Wegner, Daniel M; (2010). Implicit Memory and Explicit Memory. New York: Worth Publishers. p. 238. ISBN 1-4292-3719-8. OCLC 755079969. {{cite book}}: |work= ignored (help)CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  20. ^ Fagan, J.F. (June 1974). "Infant recognition memory: the effects of length of familiarization and type of discrimination task". Child Dev. 45 (2): 351–356. PMID 4837713.
  21. ^ Rovee-Collier, Carolyn (1999). "The Development of Infant Memory" (PDF). Current Directions in Psychological Science. 8 (3): 80–85. doi:10.1111/1467-8721.00019. ISSN 0963-7214.
  22. ^ Rovee-Collier, C.K., Bhatt, R. S. (1993). Ross Vasta (ed.). Evidence of long-term retention in infancy. Vol. 9. London: Jessica Kingsley Pub. pp. 1–45. ISBN 1-85302-219-5. OCLC 827689578. {{cite book}}: |work= ignored (help)CS1 maint: multiple names: authors list (link)
  23. ^ Hartshorn, K.; Rovee-Collier, C.; Gerhardstein, P.; et al. (March 1998). "The ontogeny of long-term memory over the first year-and-a-half of life". Dev Psychobiol. 32 (2): 69–89. doi:10.1002/(SICI)1098-2302(199803)32:2<69::AID-DEV1>3.0.CO;2-Q. PMID 9526683. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  24. ^ a b Meltzoff, A.N. (June 1995). "What infant memory tells us about infantile amnesia: long-term recall and deferred imitation". J Exp Child Psychol. 59 (3): 497–515. doi:10.1006/jecp.1995.1023. PMC 3629912. PMID 7622990.
  25. ^ a b Bauer, Patricia J. (2002). "Long-Term Recall Memory: Behavioral and Neuro-Developmental Changes in the First 2 Years of Life". Current Directions in Psychological Science. 11 (4): 137–141. doi:10.1111/1467-8721.00186. ISSN 0963-7214.
  26. ^ Bauer, Patricia J. (2007). Remembering the times of our lives: memory in infancy and beyond. Hillsdale, N.J: Lawrence Erlbaum Associates. ISBN 0-8058-5733-8. OCLC 62089961.
  27. ^ "Paired-associate learning". Encyclopedia Britannica.
  28. ^ Kesner RP (2013). "A process analysis of the CA3 subregion of the hippocampus". Front Cell Neurosci. 7: 78. doi:10.3389/fncel.2013.00078. PMC 3664330. PMID 23750126.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  29. ^ "Recall (memory)". Encyclopedia Britannica.
  30. ^ Baddeley, Alan D., "The Psychology of Memory", pages 131-132, Basic Books, Inc., Publishers, New York, 1976, 0-465-06736-0
  31. ^ "Recognition (memory)". Encyclopedia Britannica.
  32. ^ LaBar K.S., & Cabeza R. (2006). "Cognitive neuroscience of emotional memory". Nature Reviews Neuroscience. 7: 54–64.
  33. ^ Adolphs R., Cahill L., Schul R., & Babinsky R. (1997). "Impaired declarative memory for emotional material following bilateral amygdala damage in humans". Learning & Memory. 4: 291–300.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  34. ^ Cahill L.; Babinsky R.; Markowitsch H.J.; McGaugh J.L. (1995). "The amygdala and emotional memory". Nature. 377: 295–296.
  35. ^ Kalat, J. W. (2001). Biological psychology (7th ed.). Belmont, CA: Wadsworth Publishing.
  36. ^ "Gene called Kibra plays an important role in memory". News-medical.net. Retrieved 2012-11-08.
  37. ^ Teti D.M. (2005). Handbook of research methods in developmental science: New developments in the study of infant memory. San Francisco: Blackwell Publishing.
  38. ^ a b c Barr R., Dowden A., & Hayne H. (1996). "Developmental changes in deferred imitation by 6- to 24-month-old infants". Infant Behavior and Development. 19: 159–170.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  39. ^ Bauer P.J. (2004). "Getting explicit memory off the ground: Steps toward construction of a neuro-developmental account of changes in the first two years of life". Developmental Review. 24: 347–373.
  40. ^ Bauer, P.J.; Wiebe, S.A.; Carver, L.J.; Waters, J.M.; Nelson, C.A. (November 2003). "Developments in long-term explicit memory late in the first year of life: behavioral and electrophysiological indices". Psychol Sci. 14 (6): 629–35. doi:10.1046/j.0956-7976.2003.psci_1476.x. PMID 14629697.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  41. ^ Carver, L.J.; Bauer, P.J. (March 1999). "When the event is more than the sum of its parts: 9-month-olds' long-term ordered recall". Memory. 7 (2): 147–74. doi:10.1080/741944070. PMID 10645377.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  42. ^ Carver, L.J.; Bauer, P.J. (December 2001). "The dawning of a past: the emergence of long-term explicit memory in infancy". J Exp Psychol Gen. 130 (4): 726–45. doi:10.1037/0096-3445.130.4.726. PMID 11757877.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ Cowan, N. (Ed.) (1997). The development of memory in childhood. Hove, East Sussex: Psychology Press.
  44. ^ Parkin A.J., Walter B.M., & Hunkin N.M. (1995). "Relationships between normal aging, frontal lobe function, and memory for temporal and spatial information". Neuropsychology. 9: 304–312.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  45. ^ McIntyer J.S., & Craik F.I.M. (1987). "Age differences in memory for item and source information". Canadian Journal of Psychology. 41: 175–192.
  46. ^ Corkin S, Amaral DG, Gonzalez RG, Johnson KA, Hyman, BT (1997). "H.M.'s medial temporal lobe lesion: Findings from magnetic resonance imaging". The Journal of Neuroscience. 17: 3964–3979.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  47. ^ Zola-Morgan S, Suire LR (1993). "Neuroanatomy of memory". Annual Reviews Neuroscience. 16: 547–563.
  48. ^ "Memory of Time May Be Factor in Parkinson's". Columbia.edu. 1996-04-05. Retrieved 2012-11-08.
  49. ^ Forgetfulness is the Key to a Healthy Mind. New Scientist, February 16. 2008.
  50. ^ Fox, Maggie (12 March 2007). "Want a better memory? Stop and smell the roses". Reuters. Retrieved 15 December 2013.
  51. ^ "Emotion and memory - Wikipedia, the free encyclopedia". wiki.riteme.site. 2004-04-15. Retrieved 2012-11-08.
  52. ^ Cherry, Kendra. "Amygdala - Definition". About.com. Retrieved 5 December 2012.
  53. ^ Barkay, Gavriel; Freedman, Nanette; Lester, Hava; Louzoun, Yoram; Sapoznikov, Dan; Luckenbaugh, Dave; Shalev, Arieh Y.; Chisin, Roland G.; Bonne, Omer (1 November 2012). "Brain activation and heart rate during script-driven traumatic imagery in PTSD: Preliminary findings". Psychiatry Research: Neuroimaging. Netherlands: Elsevier Science. doi:10.1016/j.pscychresns.2012.08.007. ISSN 0925-4927. {{cite journal}}: Unknown parameter |displayauthors= ignored (|display-authors= suggested) (help)
  54. ^ Jeffrys, MD,, Matt. "Clinician's Guide to Medications for PTSD". United States Department of Veterans Affairs. Retrieved 15 December 2013.{{cite web}}: CS1 maint: extra punctuation (link) CS1 maint: multiple names: authors list (link)
  55. ^ Siegelheim, Matt. "Researchers Discover Biological Pathway Linked to PTSD". abcnews.go.com. Retrieved 15 December 2013.
  56. ^ Baker, Kathi. "Emory and Atlanta Braves celebrate first anniversary of BraveHeart". Emory News. Retrieved 15 December 2013.
  57. ^ Heuer, Friderike; Reisberg, Daniel (1 September 1990). "Vivid memories of emotional events: The accuracy of remembered minutiae". Memory & Cognition. 18 (5). Springer-Verlag: 496–506. doi:10.3758/BF03198482. ISSN 0090-502X. Retrieved 15 December 2012.
  58. ^ Underwood BJ (1957). "Interference and forgetting". Psychological Review. 64: 49–60. doi:10.1037/h0044616.
  59. ^ Perkins DN, Salomon G (1992). Transfer of learning (2 ed.). Oxford: Pergamon. ISBN 0-08-041046-4. OCLC 749308019. {{cite book}}: |work= ignored (help); Unknown parameter |editors= ignored (|editor= suggested) (help)
  60. ^ Conrad, C.D. (2010). A critical review of chronic stress effects on spatial learning and memory. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(5), 742-755. doi:10.1016/j.pnpbp.2009.11.003
  61. ^ Schwabe, L.; Wolf, O.T. (2010). "Learning under stress impairs memory formation". Neurobiology of Learning and Memory. 93 (2): 183–188. doi:10.1016/j.nlm.2009.09.009.
  62. ^ Schwabe, L.; Wolf, O.T. (2009). "The context counts: Congruent learning and testing environments prevent memory retrieval impairment following stress". Affective & Behavioral Neuroscience. 9 (3): 229–236. doi:10.3758/CABN.9.3.229.
  63. ^ Schwabe, L.; Bohringer, A.; Wolf, O.T. (2009). "Stress disrupts context-dependent memory". Learning and Memory. 16 (2): 110–113. doi:10.1101/lm.1257509.
  64. ^ Schwarzel. M.& Mulluer. U., "Dynamic Memory Networks", "Cellular and Molecular Life Science", 2006
  65. ^ Loftus EF & Palmer JC (1974). "Reconstruction of automobile destruction: An example of the interaction between language and memory". Journal of Verbal Learning & Verbal Behavior. 13: 585–589.
  66. ^ Loftus GR (1992). "When a lie becomes memory's truth: Memory distortion after exposure to misinformation". Current Directions in Psychological Science. 1: 121–123.
  67. ^ Goff LM & Roediger HL (1998). "Imagination inflation for action events: Repeated imaginings lead to illusory recollections". Memory and Cognition. 26: 20–33.
  68. ^ Garry M, Manning CG, Loftus EF, & Sherman SJ (1996). "Imagination inflation: Imagining a childhood event inflates confidence that it occurred". Psychonomic Bulletin & Review. 3: 208–214. doi:10.3758/bf03212420.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  69. ^ Hogenboom, Melissa (July 25, 2013). "Scientists can implant false memories into mice". BBC News. Retrieved July 26, 2013."A mouse. A laser beam. A manipulated memory." (video) — the scientists' June 2013 TED talk.
  70. ^ Small, G.W.; Silverman, D.H.; Siddarth, P.; et al. (June 2006). "Effects of a 14-day healthy longevity lifestyle program on cognition and brain function". Am J Geriatr Psychiatry. 14 (6): 538–45. doi:10.1097/01.JGP.0000219279.72210.ca. PMID 16731723. {{cite journal}}: Explicit use of et al. in: |author= (help)CS1 maint: multiple names: authors list (link)
  71. ^ "International Longevity Center report on memory" (PDF). Retrieved 1 September 2008.
  72. ^ Henrik Olsson, Leo Poom and Anne Treisman Proceedings of the National Academy of Sciences of the United States of America , Vol. 102, No. 24 (Jun. 14, 2005), pp. 8776-8780