Jump to content

Gallium indium antimonide

From Wikipedia, the free encyclopedia
(Redirected from Indium gallium antimonide)

Gallium indium antimonide, also known as indium gallium antimonide, GaInSb, or InGaSb (GaxIn1-xSb), is a ternary III-V semiconductor compound. It can be considered as an alloy between gallium antimonide and indium antimonide. The alloy can contain any ratio between gallium and indium. GaInSb refers generally to any composition of the alloy.

Preparation

[edit]

GaInSb films have been grown by molecular beam epitaxy,[1] chemical beam epitaxy[2] and liquid phase epitaxy[3] on gallium arsenide and gallium antimonide substrates. It is often incorporated into layered heterostructures with other III-V compounds.

Electronic Properties

[edit]
Dependence of the direct and indirect band gaps of GaInSb on composition at room temperature (T = 300 K).[4][5]

The bandgap and lattice constant of GaInSb alloys are between those of pure GaSb (a = 0.610 nm, Eg = 0.73 eV) and InSb (a = 0.648 nm, Eg = 0.17 eV).[4] Over all compositions, the bandgap is direct, like in pure GaSb and InSb.

Applications

[edit]

InGaSb and InGaSb-containing heterostructures have been studied for use in near- to mid-infrared photodetectors,[6][7][8] transistors,[9][10] and hall effect sensors.[11]

References

[edit]
  1. ^ Kodama, M., Kimata, M. (1985). "Molecular beam epitaxy of GaSb and InGaSb". Journal of Crystal Growth. 73 (3): 641–645. Bibcode:1985JCrGr..73..641K. doi:10.1016/0022-0248(85)90031-4.
  2. ^ Kaneko, T., Asahi, H., Okuno, Y., Gonda, S. (1989). "MOMBE (Metalorganic Molecular Beam Epitaxy) growth of InGaSb on GaSb". Journal of Crystal Growth. 95 (1): 158–162. Bibcode:1989JCrGr..95..158K. doi:10.1016/0022-0248(89)90372-2.
  3. ^ Mauk, M. G., Tata, A. N., Cox, J. A. (2001). "Solution growth of thick III–V antimonide alloy epilayers (InAsSb, InGaSb, InGaAsSb, AlGaAsSb, and InAsSbP) for "virtual substrates"". Journal of Crystal Growth. 225 (2): 236–243. Bibcode:2001JCrGr.225..236M. doi:10.1016/S0022-0248(01)00843-0.
  4. ^ a b Vurgaftman, I., Meyer, J. R., Ram-Mohan, L. R. (2001). "Band parameters for III–V compound semiconductors and their alloys". Journal of Applied Physics. 89 (11): 5815–5875. Bibcode:2001JAP....89.5815V. doi:10.1063/1.1368156.
  5. ^ Adachi, S. (1987). "Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4 μm optoelectronic device applications". Journal of Applied Physics. 61 (10): 4869–4876. doi:10.1063/1.338352.
  6. ^ Rogalski, A., Martyniuk, P. (2006). "InAs/GaInSb superlattices as a promising material system for third generation infrared detectors". Infrared Physics & Technology. 48 (1): 39–52. Bibcode:2006InPhT..48...39R. doi:10.1016/j.infrared.2005.01.003.
  7. ^ Li, D., Lan, C., Manikandan, A., Yip, S., Zhou, Z., Liang, X., Shu, L., Chueh, Y.-L., Han, N., Ho, J. C. (2019). "Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires". Nature Communications. 10 (1). Nature Publishing Group: 1664. Bibcode:2019NatCo..10.1664L. doi:10.1038/s41467-019-09606-y. PMC 6458123. PMID 30971702.
  8. ^ Refaat, T. F., Abedin, M. N., Bhagwat, V., Bhat, I. B., Dutta, P. S., Singh, U. N. (2004). "InGaSb photodetectors using an InGaSb substrate for 2μm applications". Applied Physics Letters. 85 (11): 1874–1876. Bibcode:2004ApPhL..85.1874R. doi:10.1063/1.1787893.
  9. ^ Ho, H.-C., Gao, Z.-Y., Lin, H.-K., Chiu, P.-C., Hsin, Y.-M., Chyi, J.-I. (2012). "Device Characteristics of InGaSb/AlSb High-Hole-Mobility FETs". IEEE Electron Device Letters. 33 (7): 964–966. Bibcode:2012IEDL...33..964H. doi:10.1109/LED.2012.2193656. S2CID 6254124.
  10. ^ Loesch, R., Aidam, R., Kirste, L., Leuther, A. (2011). "Molecular beam epitaxial growth of metamorphic AlInSb/GaInSb high-electron-mobility-transistor structures on GaAs substrates for low power and high frequency applications". Journal of Applied Physics. 109 (3): 033706–033706–5. Bibcode:2011JAP...109c3706L. doi:10.1063/1.3544041.
  11. ^ Partin, D. L., Heremans, J. P., Schroeder, T., Thrush, C. M., Flores-Mena, L. A. (2006). "Temperature stable Hall effect sensors". IEEE Sensors Journal. 6 (1): 106–110. Bibcode:2006ISenJ...6..106P. doi:10.1109/JSEN.2005.860362. S2CID 40140622.
[edit]