Jump to content

File:Shell-diag-1.svg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (SVG file, nominally 303 × 147 pixels, file size: 21 KB)

Summary

Description
English: A diagram illustrating the derivation of Newton's shell theorem. Shown is a thin shell with a test mass outside the shell ().
Date
Source Own work
Author Xaonon

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Source

This image and the others in the same series (2, 3, 4) were generated from the MetaPost code presented below. The code is released under the same license as the images themselves.

% shell-diag.mp
% A diagram illustrating the derivation of Newton's shell theorem.  To be
% processed with MetaPost:
%   mpost --mem=metafun.mem -s 'outputformat="svg"' -s prologues=3 shell-diag.mp

color bandshade, fillshade;
bandshade = 0.7 [blue, white];
fillshade = 0.9 white;

numeric dotsize, deg;
dotsize = 5 bp;
deg = length( fullcircle )/360;

freelabeloffset := 3/4 freelabeloffset;
labeloffset := 2 labeloffset;

def dot( expr P ) =
  fill fullcircle scaled dotsize shifted P withcolor black;
enddef;

def draw_circle( expr R, stroke ) =
  save p;
  pen p;
  p = currentpen;
  pickup p scaled stroke;
  draw fullcircle scaled 2R;
  pickup p;
enddef;

vardef anglebetween( expr a, b, rad, str ) =
  save endofa, endofb, common, curve, where;
  pair endofa, endofb, common;
  path curve;
  numeric where;
  endofa = point length( a ) of a;
  endofb = point length( b ) of b;
  if round point 0 of a = round point 0 of b:
    common = point 0 of a;
  else:
    common = a intersectionpoint b;
  fi;
  where = turningnumber( common--endofa--endofb--cycle );
  curve = (unitvector( endofa - common ){(endofa - common) rotated (90 * where)} ..
           unitvector( endofb - common )) scaled rad shifted common;
  draw thefreelabel( str, point 1/2 of curve, common ) withcolor black;
  curve
enddef;

def draw_angle( expr a, b, rad, str ) =
  begingroup
    save p;
    pen p;
    p = currentpen;
    pickup p scaled 1/2;
    draw anglebetween( a, b, rad, str );
    pickup p;
  endgroup
enddef;

def label_line( expr a, b, disp, str ) =
  begingroup
  save mid, opp;
  pair mid, opp;
  mid = 1/2 [a, b];
  opp = -disp rotated (angle( b - a ) - 90) shifted mid;
  draw thefreelabel( str, mid, opp );
  draw a -- b;
  endgroup
enddef;

def draw_thinshell( expr R, r, theta, dtheta, thetarad, phirad ) =
  begingroup
    save M, m;
    pair M, m;
    M = (0, 0);
    m = (r, 0);

    save circ;
    path circ;
    circ = fullcircle scaled 2R;

    save thetapt, dthetapt;
    pair thetapt, dthetapt;
    thetapt   = point (theta * deg) of circ;
    dthetapt  = point ((theta + dtheta) * deg) of circ;

    save upper, lower, band;
    path upper, lower, band;
    upper = subpath (0, 4) of circ;
    lower = subpath (4, 8) of circ;
    band = buildcycle( upper, (xpart thetapt,  R) -- (xpart thetapt,  -R),
                       lower, (xpart dthetapt, R) -- (xpart dthetapt, -R) );

    % draw figures
    save p;
    pen p;
    p = currentpen;
    pickup p scaled 1/2;
    fill band withcolor bandshade;
    draw band;
    pickup p;

    save near, far;
    pair near, far;
    if theta < 90:
      near = 3/4[ulcorner band, llcorner band];
      far  = right shifted near;
    else:
      near = 3/4[urcorner band, lrcorner band];
      far  = left shifted near;
    fi;
    draw thefreelabel( btex $dM$ etex, near, far );

    dot( M );
    %label.llft( btex $M$ etex, M );

    dot( m );
    label.lrt( btex $m$ etex, m );

    draw M -- thetapt;
    label_line( M, m, right, btex $r$ etex );
    label_line( m, thetapt, right, btex $s$ etex );
    if R <> r:
      label_line( M, dthetapt, left, btex $R$ etex );
    else:
      draw M -- dthetapt;
    fi;

    draw_angle( m -- M, m -- thetapt, phirad, btex $\phi$ etex );
    draw_angle( M -- m, M -- thetapt, thetarad, btex $\theta$ etex );
    draw_angle( M -- thetapt, M -- dthetapt, R, btex $d\theta$ etex );
  endgroup
enddef;

def draw_thickshell( expr Ra, Rb, r ) =
  begingroup
    save m;
    pair m;
    m = (r, 0);

    fill fullcircle scaled 2Rb withcolor fillshade;
    fill fullcircle scaled 2r  withcolor bandshade;
    unfill fullcircle scaled 2Ra;

    dot( origin );
    dot( m );
    label.lrt( btex $m$ etex, m );
    label_line( origin, m, right, btex $r$ etex );

    draw_circle( Rb, 2 );
    if Ra > 0:
      draw_circle( Ra, 2 );
      label_line( origin, dir( 100 ) scaled Rb, left,  btex $R_b$ etex );
      label_line( origin, dir( 80 )  scaled Ra, right, btex $R_a$ etex );
    else:
      label_line( origin, dir( 90 )  scaled Rb, left,  btex $R_b$ etex );
    fi;
  endgroup
enddef;

% Thin shell, r > R
beginfig(1)
  numeric R;
  R = 1 in;
  draw_thinshell( R, 3R, 50, 15, 1/4 in, 3/4 in );
  draw_circle( R, 2 );
  setbounds currentpicture to boundingbox currentpicture enlarged 1pt;
endfig;

% Thin shell, r < R
beginfig(2)
  numeric R;
  R = 1 in;
  draw_thinshell( R, 0.7R, 125, 15, 1/8 in, 1/3 in );
  draw_circle( R, 2 );
  setbounds currentpicture to boundingbox currentpicture enlarged 1pt;
endfig;

% Thick shell
beginfig(3)
  numeric Ra, Rb, r;
  Ra = 0.8 in;
  Rb = 1.3 in;
  r = 1 in;

  draw_thickshell( Ra, Rb, r );
  setbounds currentpicture to boundingbox currentpicture enlarged 1pt;
endfig;

% Solid sphere
beginfig(4)
  numeric Ra, Rb, r;
  Ra = 0;
  Rb = 1.3 in;
  r = 1 in;

  draw_thickshell( Ra, Rb, r );
  setbounds currentpicture to boundingbox currentpicture enlarged 1pt;
endfig;

end

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

25 February 2017

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:55, 26 February 2017Thumbnail for version as of 00:55, 26 February 2017303 × 147 (21 KB)Xaonontweak bounding box
00:10, 26 February 2017Thumbnail for version as of 00:10, 26 February 2017301 × 145 (21 KB)XaononUser created page with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata