Jump to content

File:Representing three-dimensional map information.jpg

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (450 × 601 pixels, file size: 40 KB, MIME type: image/jpeg)

Summary

Description
English: Figure 13. Approaches for representing three-dimensional map information, and for managing it in the data model.

A. Vector-based stack-unit maps depict the vertical succession of geologic units to a specified depth (here, the base of the block diagram). This mapping approach characterizes the vertical variations of physical properties in each 3-D map unit. In this example, an alluvial deposit (unit “a”) overlies glacial till (unit “t”), and the stack-unit labeled “a/t” indicates that relationship, whereas the unit “t” indicates that glacial till extends down to the specified depth. In a manner similar to that shown in figure 11, the stack-unit’s occurrence (the map unit’s outcrop), geometry (the map unit’s boundaries), and descriptors (the physical properties of the geologic units included in the stack-unit) are managed as they are for a typical 2-D geologic map.

B. Raster-based stacked surfaces depict the surface of each buried geologic unit, and can accommodate data on lateral variations of physical properties. In this example from Soller and others (1999), the upper surface of each buried geologic unit was represented in raster format as an ArcInfo Grid file. The middle grid is the uppermost surface of an economically important aquifer, the Mahomet Sand, which fills a pre- and inter-glacial valley carved into the bedrock surface. Each geologic unit in raster format can be managed in the data model, in a manner not dissimilar from that shown for the stack-unit map. The Mahomet Sand is continuous in this area, and represents one occurrence of this unit in the data model. Each raster, or pixel, on the Mahomet Sand surface has a set of map coordinates that are recorded in a GIS (in the data model bin that is labeled “Pixel coordinates”, which is the raster corollary of the “Geometry” bin for vector map data). Each pixel can have a unique set of descriptive information, such as surface elevation, unit thickness, lithology, transmissivity, etc.).
Date
Source The National Geologic Map Database Project: Overview and Progress U.S. Geological Survey Open-File Report 03–471
Author David R. Soller1 and Thomas M. Berg

Licensing

Public domain
This work is in the public domain in the United States because it is a work prepared by an officer or employee of the United States Government as part of that person’s official duties under the terms of Title 17, Chapter 1, Section 105 of the US Code. Note: This only applies to original works of the Federal Government and not to the work of any individual U.S. state, territory, commonwealth, county, municipality, or any other subdivision. This template also does not apply to postage stamp designs published by the United States Postal Service since 1978. (See § 313.6(C)(1) of Compendium of U.S. Copyright Office Practices). It also does not apply to certain US coins; see The US Mint Terms of Use.
This file has been identified as being free of known restrictions under copyright law, including all related and neighboring rights.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current00:35, 9 October 2008Thumbnail for version as of 00:35, 9 October 2008450 × 601 (40 KB)Mdd== Summary == {{Information |Description={{en|1= Figure 13. Approaches for representing three-dimensional map information, and for managing it in the data model. A. Vector-based stack-unit maps depict the vertical succession of geologic units to a speci

The following 2 pages use this file:

Global file usage

The following other wikis use this file:

Metadata