File:Mandelbrot DEM Sobel.png
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,048 × 2,048 pixels | 3,000 × 3,000 pixels.
Original file (3,000 × 3,000 pixels, file size: 340 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionMandelbrot DEM Sobel.png |
English: Boundary of Mandelbrot set.
It is made with DEM/M and edge detection of boundaries of hyperbolic components |
Date | |
Source | my own work with use of code by Wolf Jung (www.mndynamics.com) and by J. C. Sprott[1] |
Author | Adam majewski |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Compare with
- contour integration by Robert Davies[2]
- Atlas of the Mandelbrot set by M. Romera
-
Simple boundary with DEM/M
-
Boundaries of 53 hyperbolic components of Mandelbrot set for periods 1-6 made with polynomial maps from the unit circle
-
Level curves of escape time
-
6 lemniscates of Mandelbrot set. Computed using implicit equations.
-
Interior DEM/M
Src code
/*
c console program, for CPU, one thread. numbers type : double
It can be compiled and run under Linux, windows, Mac
It needs gcc
draw :
- components using period
- find boundaries of components using sobel filter
- add boundary computed by DEM/M
- save it to the pgm file
-----------------------------------------
1.pgm file code is based on the code of Claudio Rocchini
http://wiki.riteme.site/wiki/Image:Color_complex_plot.jpg
create 8 bit color graphic file , portable gray map file = pgm
see http://wiki.riteme.site/wiki/Portable_pixmap
to see the file use external application ( graphic viewer)
I think that creating graphic can't be simpler
---------------------------
2. first it creates data array which is used to store color values of pixels,
fills tha array with data and after that writes the data from array to pgm file.
It alows free ( non sequential) acces to "pixels"
-------------------------------------------
Adam Majewski fraktal.republika.pl
to compile :
gcc c.c -lm -Wall
to run ( Linux console) :
./a.out
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
/* iXmax/iYmax = 1 */
#define iSide 2003 /* side of rectangle in pixels */
#define iXmax iSide /* height of image in pixels */
#define iYmax iSide
#define iLength (iXmax*iYmax) /* number of pixels */
/* world ( double) coordinate */
#define CxMin -2.2
#define CxMax 0.8
#define CyMin -1.5
#define CyMax 1.5
/* (CxMax-CxMin)/(CyMax-CyMin)==iXmax/iYmax = 1 */
#define IterationMax (iXmax*10) /* proportional to resolution of picture */
#define PixelWidth ((CxMax-CxMin)/iXmax)
#define PixelHeight ((CyMax-CyMin)/iYmax)
#define distanceMax (PixelWidth) /* proportional to pixel size */
/* fc(z) = z*z + c */
#define EscapeRadius 2.0 /* radius of circle around origin; its complement is a target set for escaping points */
#define ER2 (EscapeRadius*EscapeRadius)
/* colors = shades of gray from 0=black to 255=white */
#define iExterior 245 /* exterior of Julia set */
#define iBoundary 0 /* border , boundary*/
#define iInterior 230
/* escape time to infinity of function fc(z) = z*z + c */
int GiveExtLastIteration(double C_x, double C_y, int iMax, double _ER2)
{
int i; /* iteration */
double Zx, Zy; /* Z = Zx + Zy*i */
double Zx2, Zy2; /* Zx2=Zx*Zx; Zy2=Zy*Zy */
Zx=0.0; /* initial value of orbit */
Zy=0.0;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
for (i=0;i<iMax && ((Zx2+Zy2)<_ER2);i++)
{
Zy=2*Zx*Zy + C_y;
Zx=Zx2-Zy2 +C_x;
Zx2=Zx*Zx;
Zy2=Zy*Zy;
};
return i; /* last iteration */
}
/*-----------------------------*/
int SameComplexValue(double Z1x,double Z1y,double Z2x,double Z2y, double precision)
{
if (fabs(Z1x-Z2x)<precision && fabs(Z1y-Z2y)<precision)
return 1; /* true */
else return 0; /* false */
}
/*-------------------------------*/
// this function is based on program:
// Program MANCHAOS.BAS
// http://sprott.physics.wisc.edu/chaos/manchaos.bas
// (c) 1997 by J. C. Sprott
//
int GivePeriod(double Cx,double Cy, int Iteration_Max, double precision)
{
double Zx2, Zy2, /* Zx2=Zx*Zx; Zy2=Zy*Zy */
ZPrevieousX,ZPrevieousY,
ZNextX,ZNextY;
int Iteration,
I;
double orbit[Iteration_Max+1][2]; /* array elements are numbered from 0 to length-1 */
/* starting point is critical point */
ZPrevieousX=0.0;
ZPrevieousY=0.0;
orbit[0][0]=0.0;
orbit[0][1]=0.0;
Zx2=ZPrevieousX*ZPrevieousX;
Zy2=ZPrevieousY*ZPrevieousY;
/* iterate and save points for analysis */
for (Iteration=1;Iteration<Iteration_Max+1 ;Iteration++)
{
ZNextY=2*ZPrevieousX*ZPrevieousY + Cy;
ZNextX=Zx2-Zy2 +Cx;
Zx2=ZNextX*ZNextX;
Zy2=ZNextY*ZNextY;
if ((Zx2+Zy2)>ER2) return 0; /* basin of atraction to infinity */
//if (SameComplexValue(ZPrevieousX,ZPrevieousY,ZNextX,ZNextY,precision))
// return 1; /* fixed point , period =1 */
ZPrevieousX=ZNextX;
ZPrevieousY=ZNextY;
/* */
orbit[Iteration][0]=ZNextX;
orbit[Iteration][1]=ZNextY;
};
/* here iteration=IterationMax+1 but last element of orbit has number IterationMax */
for(I=Iteration_Max-1;I>0;I--)
if (SameComplexValue(orbit[Iteration_Max][0],orbit[Iteration_Max][1],orbit[I][0],orbit[I][1],precision))
return(Iteration_Max-I);
return 0;
}
/*
estimates distance from point c to nearest point in Julia set
for Fc(z)= z*z + c
z(n+1) = Fc(zn)
this function is based on function mndlbrot::dist from mndlbrot.cpp
from program mandel by Wolf Jung (GNU GPL )
http://www.mndynamics.com/indexp.html
Hyunsuk Kim :
For Julia sets, z is the variable and c is a constant. Therefore df[n+1](z)/dz = 2*f[n]*f'[n] -- you don't add 1.
For the Mandelbrot set on the parameter plane, you start at z=0 and c becomes the variable. df[n+1](c)/dc = 2*f[n]*f'[n] + 1.
*/
double mDist(double Cx, double Cy , int iter_max)
{
int i;
double x = 0.0, /* Z = x+y*i */
y = 0.0,
/* Zp = xp+yp*1 = 1 */
xp = 1,
yp = 0,
/* temporary */
nz,
nzp,
/* a = abs(z) */
a;
for (i = 1; i <= iter_max; i++)
{ /* first derivative zp = 2*z*zp = xp + yp*i; */
nz = 2*(x*xp - y*yp) +1.0 ; /* ?? */
yp = 2*(x*yp + y*xp);
xp = nz;
/* z = z*z + c = x+y*i */
nz = x*x - y*y + Cx;
y = 2*x*y + Cy;
x = nz;
/* */
nz = x*x + y*y;
nzp = xp*xp + yp*yp;
if (nzp > 1e60 || nz > 1e60) break;
}
a=sqrt(nz);
/* distance = 2 * |Zn| * log|Zn| / |dZn| */
return 2* a*log(a)/sqrt(nzp);
}
unsigned int f(unsigned int _iX, unsigned int _iY)
/*
gives position of point (iX,iY) in 1D array ; uses also global variables
it does not check if index is good so memory error is possible
*/
{return (_iX + (iYmax-_iY-1)*iXmax );}
/* --------------------------------------------------------------------------------------------------------- */
int main(){
unsigned int iX,iY, /* indices of 2D virtual array (image) = integer coordinate */
i; /* index of 1D array */
double Cx,Cy;
int //LastIteration,
period;
/* color */
//unsigned char ColorList[]={255,230,180};
/* two dynamic 1D arrays for colors ( shades of gray ) */
unsigned char *data, *edge;
data = malloc( iLength * sizeof(unsigned char) );
edge = malloc( iLength * sizeof(unsigned char) );
if (data == NULL || edge==NULL)
{
fprintf(stderr," Could not allocate memory");
return 1;
}
else printf(" memory is OK\n");
printf(" find components of Mandelbrot set and save them to the data array \n");
for(iY=0;iY<iYmax;++iY){
Cy=CyMin + iY*PixelHeight; /* */
if (fabs(Cy)<PixelHeight/2) Cy=0.0; /* use it for interior , not for boundary */
printf("Period row %u from %u \n",iY, iYmax);
for(iX=0;iX<iXmax;++iX){
Cx=CxMin + iX*PixelWidth;
period = GivePeriod(Cx,Cy, IterationMax, distanceMax);
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if ( period == 0 )
data[i]=iExterior;
else data[i]=period; /* interior */
/* if (Cx>0 && Cy>0) data[i]=255-data[i]; check the orientation of Z-plane by marking first quadrant */
}
}
printf(" find boundaries of components of Mandelbrot set in data array using Sobel filter and save to edge array \n");
unsigned char G, Gh, Gv; /* sobel filter */
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX){
Gv= data[f(iX-1,iY+1)] + 2*data[f(iX,iY+1)] + data[f(iX-1,iY+1)] - data[f(iX-1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX+1,iY-1)];
Gh= data[f(iX+1,iY+1)] + 2*data[f(iX+1,iY)] + data[f(iX-1,iY-1)] - data[f(iX+1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0)
{edge[i]=255;} /* background */
else {edge[i]=iBoundary;} /* boundary */
}
}
printf(" find boundary of Mandelbrot set using DEM/M \n");
for(iY=0;iY<iYmax;++iY){
printf(" DEM row %u from %u \n",iY, iYmax);
for(iX=0;iX<iXmax;++iX){
i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if ( data[i]==iExterior )
{ Cy=CyMin + iY*PixelHeight;
//if (fabs(Cy)<PixelHeight/2) Cy=0.0; /* use it for interior , not for boundary */
Cx=CxMin + iX*PixelWidth;
if (mDist(Cx,Cy,IterationMax)<distanceMax) data[i]=iBoundary;}
else data[i]= iInterior;
/* if (Cx>0 && Cy>0) data[i]=255-data[i]; check the orientation of Z-plane by marking first quadrant */
}
}
printf(" copy components boundaries from edge to data array \n");
for(iY=1;iY<iYmax-1;++iY){
for(iX=1;iX<iXmax-1;++iX)
{i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
if (edge[i]==iBoundary) data[i]=iBoundary;}}
/* ---------- file -------------------------------------*/
printf(" save data array to the pgm file \n");
FILE * fp;
char name [10]; /* name of file */
i = sprintf(name,"iXmax%u",iXmax); /* result (is saved in i) but is not used */
char *filename =strcat(name,".pgm");
char *comment="# ";/* comment should start with # */
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
/* save image to the file */
fp = fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode */
fprintf(fp,"P5\n %s\n %u\n %u\n %u\n",comment,iXmax,iYmax,MaxColorComponentValue); /*write header to the file*/
fwrite(data,iLength,1,fp); /*write image data bytes to the file in one step */
printf("File %s saved. \n", filename);
fclose(fp);
/* --------------free memory ---------------------*/
free(data);
free(edge);
return 0;
}
references
- ↑ Program manchaos.bas by J. C. Sprott
- ↑ http://www.robertnz.net/cx.htm contour integration by Robert Davies
Items portrayed in this file
depicts
some value
16 August 2011
347,846 byte
3,000 pixel
3,000 pixel
image/png
86a6d974c93ca1aee7971349c24141668802178e
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 11:29, 16 August 2011 | 3,000 × 3,000 (340 KB) | Soul windsurfer | smaller size | |
11:22, 16 August 2011 | 4,003 × 4,003 (207 KB) | Soul windsurfer |
File usage
The following 2 pages use this file:
Global file usage
The following other wikis use this file:
Retrieved from "https://wiki.riteme.site/wiki/File:Mandelbrot_DEM_Sobel.png"