Jump to content

File:Heteroclinic orbit in pendulum phaseportrait.png

Page contents not supported in other languages.
This is a file from the Wikimedia Commons
From Wikipedia, the free encyclopedia

Original file (1,017 × 529 pixels, file size: 15 KB, MIME type: image/png)

Summary

Description Phaseportrait for the pendulum equation with the heteroclinic orbit highlighted. Created by Jitse Niesen using Matlab.
Date 29 June 2006 (original upload date)
Source No machine-readable source provided. Own work assumed (based on copyright claims).
Author No machine-readable author provided. Jitse Niesen assumed (based on copyright claims).

Discussion

How come the orbit isn't called homoclinic? The domain is periodic: starting and ending point are the same.

That depends on what you consider as the domain. If the domain is a circle (and hence periodic), which is the most natural choice, then you're right and the orbit is homoclinic. If the domain is R, the set of real numbers, then the starting and ending point are not the same. But you certainly have a point that this is a confusing example; thanks for that. -- Jitse Niesen 06:45, 2 February 2007 (UTC)

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Matlab source

clf; 
axis([-2*pi 2*pi -3 3]);
daspect([1 1 1]);
hold on;

% Draw constant energy contours
qs = linspace(-2*pi, 2*pi, 101);
[Q,P] = meshgrid(qs, linspace(-3,3));
H = P.*P/2 - cos(Q);
contour(Q,P,H, [-0.95 -0.5 0.3  2 4], 'k'); 

% Draw energy = 0 contour
ps = sqrt(2+2*cos(qs));
plot(qs,ps, 'k');
plot(qs,-ps, 'k');

% Draw heteroclinic connection
qs = linspace(-pi, pi, 101);
ps = sqrt(2+2*cos(qs));
plot(qs,ps, 'r', 'LineWidth', 3);
plot([-pi pi], [0 0], 'r.', 'MarkerSize', 25);

% Arrows
plot(-pi+[-0.10 0.05], sqrt(6)+[0.05 0], 'k');
plot(-pi+[-0.10 0.05], sqrt(6)+[-0.05 0], 'k');
plot(pi+[-0.10 0.05], sqrt(2)+[0.05 0], 'k');
plot(pi+[-0.10 0.05], sqrt(2)+[-0.05 0], 'k');
plot([-0.10 0.05], [1.05 1], 'k');
plot([-0.10 0.05], [0.95 1], 'k');
plot([0.10 -0.05], -sqrt(2.6)+[0.05 0], 'k');
plot([0.10 -0.05], -sqrt(2.6)+[-0.05 0], 'k');
plot(-pi+[0.10 -0.05], -sqrt(2)+[0.05 0], 'k');
plot(-pi+[0.10 -0.05], -sqrt(2)+[-0.05 0], 'k');
plot(pi+[0.10 -0.05], -sqrt(6)+[0.05 0], 'k');
plot(pi+[0.10 -0.05], -sqrt(6)+[-0.05 0], 'k');
plot([-0.2 0.2], [2.1 2], 'r', 'LineWidth', 3);
plot([-0.2 0.2], [1.9 2], 'r', 'LineWidth', 3);

% Axes
xlabel('\it{x}');
ylabel('\it{x}''');
set(gca, 'XTick', [-2*pi -pi 0 pi 2*pi]);
set(gca, 'XTickLabel', {'-2pi' '-pi' '0' 'pi' '2pi'});

% Print
print -dpng 'heteroclinic_tmp.png';
system('convert -trim -bordercolor white -border 10 +repage heteroclinic_tmp.png heteroclinic.png');

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

29 June 2006

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current10:50, 29 June 2006Thumbnail for version as of 10:50, 29 June 20061,017 × 529 (15 KB)Jitse NiesenPhaseportrait for the pendulum equation with the heteroclinic orbit highlighted. Created by ~~~ using Matlab.

The following page uses this file:

Global file usage

The following other wikis use this file: