File:Cauliflower Julia set DLD field lines.png
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 1.26 MB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionCauliflower Julia set DLD field lines.png |
English: Cauliflower Julia set DLD field lines. Algorithm : Discrete Lagrangian Descriptors (DLD) by Víctor J. García-Garrido[1] Here exterior = level cures of escape time, interior = field lines. The boundaries of parabolic checkerboard and the Julia set itself are not drawn: we see it as the locus of points where the circles are especially close to each other. |
Date | |
Source | Own work with help of pauldelbrot[2] |
Author | Adam majewski |
Other versions |
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
c src code
/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
==============================================
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >i.txt
time ./a.out >e.txt
=======================
# gnuplot "i.plt"
set terminal svg enhanced background rgb 'white'
set xlabel "re(z)"
set ylabel "DLD"
set title "Relation between z and DLD in the interior of Julia set for c = -1"
set output "interior.svg"
plot "i.txt" with lines
----------------------
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 10000; //
// The size of array has to be a positive constant integer
static unsigned int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
unsigned char *bin;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
static const double ZxMin = -1.2; //-0.05;
static const double ZxMax = 1.2; //0.75;
static const double ZyMin = -1.2; //-0.1;
static const double ZyMax = 1.2; //0.7;
static double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static double ratio;
// complex numbers of parametr plane
double complex c = 0.25; // parameter of function fc(z)=z^2 + c
double complex zf = 0.5;
double ER = 1e60;
double AR = 1e-20; //1e-0;
const int N = 1000; // fixed number : maximal number of iterations
double p = 0.015625; // 1/64 // 0.25;
double m = 2.0; // density of curves
int iInterior = 0;
int iExterior = 0;
/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfBoundary = 0;
/* ------------------------------------------ functions -------------------------------------------------------------*/
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy) {
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ( int ix, int iy){
double Zx = GiveZx(ix);
double Zy = GiveZy(iy);
return Zx + Zy*I;
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// ***************************************************************************************************************************
// ************************** DLD/J*****************************************
// ****************************************************************************************************************************
/* partial pnorm
input: z , zn = f(z), p
output ppn
*/
double ppnorm( complex double z, complex double zn, double p){
double s[2][3]; // array for 2 points on the Riemann sphere
int j;
double d; // denominator
double x;
double y;
double ds;
double ppn = 0.0;
// map from complex plane to riemann sphere
// z
x = creal(z);
y = cimag(z);
d = x*x + y*y + 1.0;
s[0][0] = (2.0*x)/d;
s[0][1] = (2.0*y)/d;
s[0][2] = (d-2.0)/d; // (x^2 + y^2 - 1)/d
// zn
x = creal(zn);
y = cimag(zn);
d = x*x + y*y + 1.0;
s[1][0] = (2.0*x)/d;
s[1][1] = (2.0*y)/d;
s[1][2] = (d-2.0)/d; // (x^2 + y^2 - 1)/d
// sum
for (j=0; j <3; ++j){
ds = fabs(s[1][j] - s[0][j]);
// normal: neither zero, subnormal, infinite, nor NaN
//if (fpclassify (ds) !=FP_INFINITE)
//if (isnormal(ds))
// it is solved by if (cabs(z) > 1e60 ) break; procedure in parent function
ppn += pow(ds,p); // |ds|^p
// else {ppn = 10000.0; printf("ds = infty\t");} //
}
return ppn;
}
// DLD = Discret Lagrangian Descriptior
double lagrangian( complex double z0, complex double c, int iMax, double p ){
int i; // number of iteration
double d = 0.0; // DLD = sum
double ppn; // partial pnorm
complex double z = z0;
complex double zn; // next z
//if (cabs(z) < AR || cabs(z +1)< AR) return 5.0; // for z= 0.0 d = inf
for (i=0; i<iMax; ++i){
zn = z*z +c; // complex iteration
ppn = ppnorm(z, zn, p);
d += ppn; // sum
//
z = zn;
//if (! isnormal(d)) { return 0.0; } // not works
if (cabs(z) > ER ) {
iExterior +=1;
d = - (double)i/iMax; // escape time
break; // exterior : big values produces NAN error in ppnorm computing
}
// it not works ????
if (cabs(z -zf) < AR )
{ // interior
iInterior +=1;
d = -d;
break;
}
}
if (d<0.0) {// exterior = escape time
d = -d;
}
else { // interior = DLD
d = d/((double)i); // averaging
d = m* d;
d = d - (int)d; // fractional part}
}
return d;
}
unsigned char ComputeColorOfDLD(complex double z){
//double cabsz;
int iColor;
double d;
d = lagrangian(z,c, N,p);
if ( d<0.0)
{iColor = iColorOfExterior;}
else {iColor = (int)(d*255.0) % 255;} // interior
return (unsigned char) iColor;
}
// plots raster point (ix,iy)
int DrawPointOfDLD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfDLD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfDLD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfDLD(A, ix, iy); //
}
return 0;
}
// test how values changes to tune color
int test_interior(){
// choose 2 points such that color is changing the most
complex double z = zf;
complex double z2 = 0.5*I;
int iMax = 20;
complex double dz = (zf- z2)/iMax;
printf("dz = %.16f ; %.16f\n", creal(dz), cimag(dz));
int i;
printf("z = %.16f ; %.16f\n", creal(z), cimag(z));
printf("# z d\n"); // gnuplot
for (i=0; i<iMax; ++i){
double d = lagrangian(z, c, N, p);
//int iColor = ComputeColorOfDLD(z);
// printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
printf("%d %.16f %.16f %.16f\t %d\n",i , creal(z), cimag(z),d, (int)(d*255.0) % 255); // gnuplot
z = z - dz;
}
//
double d0 = lagrangian(zf, c, N, p);
double db = lagrangian(z2, c, N, p);
double dd = d0 - db;
printf("d0 - db = %.16f - %.16f = %.16f\n",d0, db, dd);
return 0;
}
// test how values changes to tune color
int test_exterior(){
complex double z;
complex double z0 = zf;
complex double z1 = 3.0;
complex double dz = cabs(z1 - z0)/20;
z = z0;
printf("# z d color\n"); // gnuplot
while (creal(z) < creal(z1)){
double d = lagrangian(z, c, N, p);
//int iColor = ComputeColorOfDLD(z);
// printf(" z = %.16f d = %.16f color = %d \n",creal(z), d, iColor);
printf(" %.16f\t %.16f \t%d\n",creal(z), d, (int)(d*255.0) % 255); // gnuplot
z += dz;
}
//
double d0 = lagrangian(z0, c, N, p);
double d1 = lagrangian(z1, c, N, p);
double dd = d0 - d1;
printf("d0 - d1 = %.16f - %.16f = %.16f\n",d0, d1, dd);
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
FILE * fp;
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name [100]; /* name of file */
snprintf(name, sizeof name, "%.3f", k); /* */
char *filename =strncat(name,".pgm", 4);
// save image to the pgm file
fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode
fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
fwrite(A,iSize,1,fp); // write array with image data bytes to the file in one step
fclose(fp);
// info
printf("File %s saved ", filename);
if (comment == NULL || strlen(comment) ==0)
printf("\n");
else printf (". Comment = %s \n", comment);
return 0;
}
int PrintInfoAboutProgam()
{
// display info messages
printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
//printf ("iPeriodParent = %d \n", iPeriodParent);
//printf ("iPeriodOfChild = %d \n", iPeriodChild);
printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %f \n", PixelWidth);
printf("iInterior = %d \n", iInterior);
printf("iExterior = %d \n", iExterior);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %d \n", N);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is diplayed in the console
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
printf ("setup start\n");
/* 2D array ranges */
iWidth = iHeight;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((double) iWidth / (double) iHeight); // it should be 1.000 ...
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
bin = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL || bin == NULL){
fprintf (stderr, " Could not allocate memory");
return 1;
}
printf (" end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(){
printf (" allways free memory (deallocate ) to avoid memory leaks \n"); // https://wiki.riteme.site/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
free(bin);
PrintInfoAboutProgam();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main () {
setup ();
DrawImagerOfDLD(data);
SaveArray2PGMFile (data, iWidth+m+p, "DLD/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+100+m+p, "boundaries of DLD/J");
test_exterior();
test_interior();
end();
return 0;
}
text output
gcc d.c -lm -Wall -march=native -fopenmp a@zelman:~/c/julia/DLD/cauliflower/c3$ ./a.out setup start end of setup File 10002.016.pgm saved . Comment = DLD/J File 10102.016.pgm saved . Comment = boundaries of DLD/J # z d color 0.5000000000000000 -nan -128 0.6250000000000000 0.0170000000000000 4 0.7500000000000000 0.0120000000000000 3 0.8750000000000000 0.0100000000000000 2 1.0000000000000000 0.0090000000000000 2 1.1250000000000000 0.0090000000000000 2 1.2500000000000000 0.0080000000000000 2 1.3750000000000000 0.0080000000000000 2 1.5000000000000000 0.0080000000000000 2 1.6250000000000000 0.0080000000000000 2 1.7500000000000000 0.0070000000000000 1 1.8750000000000000 0.0070000000000000 1 2.0000000000000000 0.0070000000000000 1 2.1250000000000000 0.0070000000000000 1 2.2500000000000000 0.0070000000000000 1 2.3750000000000000 0.0070000000000000 1 2.5000000000000000 0.0070000000000000 1 2.6250000000000000 0.0070000000000000 1 2.7500000000000000 0.0070000000000000 1 2.8750000000000000 0.0070000000000000 1 d0 - d1 = -nan - 0.0060000000000000 = -nan dz = 0.0250000000000000 ; -0.0250000000000000 z = 0.5000000000000000 ; 0.0000000000000000 # z d 0 0.5000000000000000 0.0000000000000000 -nan -128 1 0.4750000000000000 0.0250000000000000 0.9280331453308284 236 2 0.4500000000000000 0.0500000000000000 0.9192910465882713 234 3 0.4249999999999999 0.0750000000000000 0.9115394266312915 232 4 0.3999999999999999 0.1000000000000000 0.9049469301174060 230 5 0.3749999999999999 0.1250000000000000 0.8991353614792086 229 6 0.3499999999999999 0.1500000000000000 0.8938297947360665 227 7 0.3249999999999998 0.1750000000000000 0.8888365294299110 226 8 0.2999999999999998 0.2000000000000000 0.8840080168795916 225 9 0.2749999999999998 0.2250000000000000 0.8792198184958213 224 10 0.2499999999999998 0.2500000000000000 0.8743548247356747 222 11 0.2249999999999998 0.2750000000000000 0.8692902267214979 221 12 0.1999999999999998 0.3000000000000000 0.8638837407122395 220 13 0.1749999999999998 0.3250000000000000 0.8579552568683688 218 14 0.1499999999999998 0.3500000000000000 0.8512576948111183 217 15 0.1249999999999998 0.3750000000000001 0.8434239487657011 215 16 0.0999999999999998 0.4000000000000001 0.8338568508856596 212 17 0.0749999999999998 0.4250000000000001 0.8214620348597501 209 18 0.0499999999999998 0.4500000000000001 0.8038315203825022 204 19 0.0249999999999998 0.4750000000000001 0.7734449573111908 197 d0 - db = -nan - 0.3301294532485985 = -nan allways free memory (deallocate ) to avoid memory leaks Numerical approximation of Julia set for fc(z)= z^2 + c parameter c = ( 0.2500000000000000 ; 0.0000000000000000 ) Image Width = 2.400000 in world coordinate PixelWidth = 0.000240 iInterior = 4 iExterior = 48821978 Maximal number of iterations = iterMax = 1000 ratio of image = 1.000000 ; it should be 1.000 ... gcc version: 7.5.0
postprocessing
convert 10102.016.pgm -resize 2000x2000 10.png
references
- ↑ Unveiling the Fractal Structure of Julia Sets with Lagrangian Descriptors by Víctor J. García-Garrido
- ↑ fractalforums.org: unveiling-the-fractal-structure-of-julia-sets-with-lagrangian-descriptors
some value
1 May 2020
image/png
4bc69554f2cab76e4019c062b1929aaed5b9d3d3
1,323,013 byte
2,000 pixel
2,000 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 20:03, 1 May 2020 | 2,000 × 2,000 (1.26 MB) | Soul windsurfer | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Global file usage
The following other wikis use this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
PNG file comment |
|
---|---|
File change date and time | 20:01, 1 May 2020 |