File:Basilica Julia set, level curves of escape and attraction time.png
Page contents not supported in other languages.
Tools
Actions
General
In other projects
Appearance
Size of this preview: 600 × 600 pixels. Other resolutions: 240 × 240 pixels | 480 × 480 pixels | 768 × 768 pixels | 1,024 × 1,024 pixels | 2,000 × 2,000 pixels.
Original file (2,000 × 2,000 pixels, file size: 212 KB, MIME type: image/png)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionBasilica Julia set, level curves of escape and attraction time.png |
English: Basilica Julia set, level curves of escape and attraction time. "Julia set for . The fourth degree map has two superattracting fixed points at and at , with no other critical points in the immediate basins. The grand orbit of a representative curve has been drawn in for both attracting basins. Note that each such curve in an immediate basin maps to the next smalller curve in by a twofold covering " J Milnor ( see fig 13 on page 94 , book from 2006) [1]
The Julia set boundary itself is not drawn: we see it as the locus of points where the boundaries of level curves are especially close to each other = a place with high density of level curves. "The z-plane for the complex polynomial map f(z)=z^2−1 . The points zero and -1 ... form an attracting period two orbit with attracting basin ... . If we compactify the plane by adjoining a point at infinity, then the fixed point at infinity is also an attractor, with basin ( exterior of Julia set). The common boundary of these two basins, colored black, is a repellor called the Julia set. It contains infinitely many periodic orbits, and each one is also a repellor." [2] |
Date | |
Source | Own work |
Author | Adam majewski |
Other versions |
|
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
c source code
/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
console program in c programing language
==============================================
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >a.txt
----------------------
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 4000; //
// The size of array has to be a positive constant integer
static unsigned int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
unsigned char *edge2;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
static const double ZxMin = -2.0; //-0.05;
static const double ZxMax = 2.0; //0.75;
static const double ZyMin = -2.0; //-0.1;
static const double ZyMax = 2.0; //0.7;
static double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static double ratio;
// complex numbers of parametr plane
double complex c; // parameter of function fc(z)=z^2 + c
int Period = 2;
static unsigned long int iterMax = 1000000; //iHeight*100;
static double ER = 200.0; // EscapeRadius for bailout test
double BoundaryWidth = 3.0;
double distanceMax; //distanceMax = BoundaryWidth*PixelWidth;
/* colors = shades of gray from 0 to 255 */
unsigned char iColorOfExterior = 250;
unsigned char iColorOfInterior = 200;
unsigned char iColorOfInterior1 = 210;
unsigned char iColorOfInterior2 = 180;
unsigned char iColorOfBoundary = 0;
unsigned char iColorOfUnknown = 30;
/* ------------------------------------------ functions -------------------------------------------------------------*/
//------------------complex numbers -----------------------------------------------------
// from screen to world coordinate ; linear mapping
// uses global cons
double GiveZx ( int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy) {
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ( int ix, int iy){
double Zx = GiveZx(ix);
double Zy = GiveZy(iy);
return Zx + Zy*I;
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
// bailout test
// z escapes when
// abs(z)> ER or cabs2(z)> ER2
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time
int Escapes(complex double z){
// here target set (trap) is the exterior circle with radsius = ER ( EscapeRadius)
// with ceter = origin z= 0
// on the Riemann sphere it is a circle with point at infinity as a center
if (cabs(z)>ER) return 1;
return 0;
}
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ
int nMax = iterMax;
complex double dz = 1.0; // is first derivative with respect to z.
double distance;
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values
if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
dz = 2.0*z * dz;
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
if (distance <distanceMax) return iColorOfBoundary; // distanceMax = BoundaryWidth*PixelWidth;
// else
return iColorOfExterior;
}
// plots raster point (ix,iy)
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfDEMJ(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfDEMJ (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfDEMJ(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** Unknown: boundary and slow dynamics *****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfUnknown(complex double z){
int nMax = 20; // very low value
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 10000000000*ER ) return iColorOfExterior; // big values
if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
//printf("found \n");
return iColorOfUnknown;
}
// plots raster point (ix,iy)
int DrawPointOfUnknown (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfUnknown(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfUnknown (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
//printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfUnknown(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfLSM(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
iColor = 255 - 255.0 * ((double) n)/20; // nMax or lower walues in denominator
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfLSM(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfLSM (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfLSM(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfBD(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (creal(z)>0.0)
iColor = 255;
else iColor = 0;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfBD(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** modified binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfMBD(complex double z){
// const number of iterations
int nMax = 7;
//double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
//cabsz = cabs(z);
//if (cabsz > ER) break; // esacping
//if (cabsz< PixelWidth) break; // falls into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (cabs(z) > 2.0)
{ // exterior
if (creal(z)>0.0)
iColor = 255;
else iColor = 0;
}
else iColor = iColorOfInterior;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfMBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfMBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOMfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfMBD(A, ix, iy); //
}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
FILE * fp;
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name [100]; /* name of file */
snprintf(name, sizeof name, "%.1f", k); /* */
char *filename =strncat(name,".pgm", 4);
// save image to the pgm file
fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode
fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
fwrite(A,iSize,1,fp); // write array with image data bytes to the file in one step
fclose(fp);
// info
printf("File %s saved ", filename);
if (comment == NULL || strlen(comment) ==0)
printf("\n");
else printf (". Comment = %s \n", comment);
return 0;
}
int PrintInfoAboutProgam()
{
// display info messages
printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
//printf ("iPeriodParent = %d \n", iPeriodParent);
//printf ("iPeriodOfChild = %d \n", iPeriodChild);
printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %f \n", PixelWidth);
if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
printf("distanceMax = %.16f\n", distanceMax);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is diplayed in the console
return 0;
}
int PrintInfoAboutPoint(complex double z){
//unsigned int ix, iy; // pixel coordinate
// to do
return z;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
printf ("setup start\n");
c = -1.0; //
/* 2D array ranges */
iWidth = iHeight;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((float) iWidth / (float) iHeight); // it should be 1.000 ...
//ER2 = ER * ER; // for numerical optimisation in iteration
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
edge2 = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL || edge2 == NULL){
fprintf (stderr, " Could not allocate memory");
return 1;
}
distanceMax = BoundaryWidth*PixelWidth;
printf (" end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(){
printf (" allways free memory (deallocate ) to avoid memory leaks \n"); // https://wiki.riteme.site/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
free(edge2);
PrintInfoAboutProgam();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main () {
setup ();
// ******************************** DEM/J **********************************************************
DrawImagerOfDEMJ(data);
SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
DrawImagerOfBD(data);
SaveArray2PGMFile (data, iWidth+0.2, "BD/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+0.3, "boundaries of BD/J");
DrawImagerOMfBD(data);
SaveArray2PGMFile (data, iWidth+0.4, "MBD/J");
ComputeBoundaries(data, edge2);
SaveArray2PGMFile (edge2, iWidth+0.5, "boundaries of MBD/J");
DrawImagerOfLSM(data);
SaveArray2PGMFile (data, iWidth+0.6, "LSM/J");
ComputeBoundaries(data, edge);
SaveArray2PGMFile (edge, iWidth+0.7, "boundaries of LSM/J");
CopyBoundaries(edge, edge2);
SaveArray2PGMFile (edge2, iWidth+0.8, "boundaries of LSM/J and MBD");
DrawImagerOfUnknown(data);
SaveArray2PGMFile (data, iWidth+0.9, "Unknown : boundary and slow dynamics");
end();
return 0;
}
- ↑ Dynamics in one complex variable: introductory lectures by John W. Milnor
- ↑ scholarpedia : Attractor by John Milnor
Items portrayed in this file
depicts
some value
7 January 2019
image/png
ad89d0ac57c8a3ef7ba9285eedff3c7813f7929e
216,809 byte
2,000 pixel
2,000 pixel
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 14:54, 1 August 2023 | 2,000 × 2,000 (212 KB) | Obscure2020 | Optimized with OxiPNG and ZopfliPNG. | |
21:08, 7 January 2019 | 2,000 × 2,000 (253 KB) | Soul windsurfer | User created page with UploadWizard |
File usage
The following page uses this file:
Global file usage
The following other wikis use this file: