Cobalt: Difference between revisions
m Reverted edits by 168.8.212.117 (talk) to last version by 71.230.208.234 |
No edit summary |
||
Line 2: | Line 2: | ||
{{mergefrom|Cobalt Poisoning|date=February 2008}} |
{{mergefrom|Cobalt Poisoning|date=February 2008}} |
||
{{Infobox cobalt}} |
{{Infobox cobalt}} |
||
'''Cobalt''' ({{pronEng|ˈkoʊbɒlt}}) is a hard, lustrous, grey [[ |
'''Cobalt''' ({{pronEng|ˈkoʊbɒlt}}) is a hard, lustrous, grey [[dick]], a [[chemical element]] with symbol '''Co'''. It is found in various metallic-lustred [[ore]]s such as [[cobaltite]] (CoAsS), [[safflorite]] (CoAs<sub>2</sub>) and [[skutterudite]] (CoAs<sub>3</sub>), and their oxidation products such as pink [[erythrite]] ('cobalt glance': Co<sub>3</sub>(AsO<sub>4</sub>)<sub>2</sub>.8H<sub>2</sub>O) and [[sphaerocobaltite]] (CoCO<sub>3</sub>). Cobalt is used in the preparation of [[magnetism|magnetic]], wear-resistant, and high-strength [[alloy]]s. [[Cobalt blue]] (cobalt(II) aluminate, CoAl<sub>2</sub>O<sub>4</sub>) gives a distinctive deep blue color to [[glass]], [[ceramics]], [[ink]]s, [[paint]]s, and [[varnish]]es. |
||
== Notable characteristics == |
== Notable characteristics == |
||
Cobalt is a silver or gray [[ferromagnetic]] metal. Pure cobalt is not found in nature, but compounds of cobalt occur naturally in many forms. Small |
Cobalt is a silver or gray [[ferromagnetic]] metal. Pure cobalt is not found in nature, but compounds of cobalt occur naturally in many forms. Small ayou suck dick7. The [[Curie temperature]] is 1388 K, and the magnetic moment is 1.6-1.7 [[Bohr magneton]]s per [[atom]]. In nature, it is frequently associated with [[nickel]], and both are characteristic minor components of [[meteoric iron]]. [[Mammals]] require small amounts of cobalt which is the basis of [[Cyanocobalamin|vitamin B{{ssub|12}}]]. [[Cobalt-60]], an artificially produced [[radioactive isotope]] of cobalt, is an important [[radioactive tracer]] and [[cancer]]-treatment agent. Cobalt has a [[Permeability (electromagnetism)|relative permeability]] two thirds that of iron. [[Metallic]] cobalt occurs as two [[crystallographic structure]]s [[Hexagonal close packed|hcp]] and [[Face-centered cubic|fcc]]. The ideal [[transition]] temperature between hcp and fcc structures is 722 K, but in practice, the energy difference is so small that random intergrowth of the two is common. Cobalt has a hardness of 5.5 on the [[Mohs scale of mineral hardness]].<ref>{{cite web | url = http://www.americanelements.com/co.html | title = Properties and Facts for Cobalt | accessdate = 2008-09-19}}</ref> |
||
Common [[oxidation states]] of cobalt include +2 and +3, although compounds with oxidation state +1 are also known. |
Common [[oxidation states]] of cobalt include +2 and +3, although compounds with oxidation state +1 are also known. |
Revision as of 15:08, 17 October 2008
It has been suggested that Cobalt Poisoning be merged into this article. (Discuss) Proposed since February 2008. |
Cobalt | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation | /ˈkoʊbɒlt/ [1] | |||||||||||||||||||||||||||||||||||
Appearance | Hard lustrous bluish gray metal | |||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Co) | ||||||||||||||||||||||||||||||||||||
Cobalt in the periodic table | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 27 | |||||||||||||||||||||||||||||||||||
Group | group 9 | |||||||||||||||||||||||||||||||||||
Period | period 4 | |||||||||||||||||||||||||||||||||||
Block | d-block | |||||||||||||||||||||||||||||||||||
Electron configuration | [Ar] 3d7 4s2 | |||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 15, 2 | |||||||||||||||||||||||||||||||||||
Physical properties | ||||||||||||||||||||||||||||||||||||
Phase at STP | solid | |||||||||||||||||||||||||||||||||||
Melting point | 1768 K (1495 °C, 2723 °F) | |||||||||||||||||||||||||||||||||||
Boiling point | 3200 K (2927 °C, 5301 °F) | |||||||||||||||||||||||||||||||||||
Density (at 20° C) | 8.834 g/cm3 [4] | |||||||||||||||||||||||||||||||||||
when liquid (at m.p.) | 7.75 g/cm3 | |||||||||||||||||||||||||||||||||||
Heat of fusion | 16.06 kJ/mol | |||||||||||||||||||||||||||||||||||
Heat of vaporization | 377 kJ/mol | |||||||||||||||||||||||||||||||||||
Molar heat capacity | 24.81 J/(mol·K) | |||||||||||||||||||||||||||||||||||
Vapor pressure
| ||||||||||||||||||||||||||||||||||||
Atomic properties | ||||||||||||||||||||||||||||||||||||
Oxidation states | common: +2, +3 −3,[5] −1,[6] 0,[6] +1,[6] +4,[6] +5[7] | |||||||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.88 | |||||||||||||||||||||||||||||||||||
Ionization energies |
| |||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 125 pm | |||||||||||||||||||||||||||||||||||
Covalent radius | Low spin: 126±3 pm High spin: 150±7 pm | |||||||||||||||||||||||||||||||||||
Spectral lines of cobalt | ||||||||||||||||||||||||||||||||||||
Other properties | ||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | |||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp) (hP2) | |||||||||||||||||||||||||||||||||||
Lattice constants | a = 250.71 pm c = 407.00 pm (at 20 °C)[4] | |||||||||||||||||||||||||||||||||||
Thermal expansion | 12.9×10−6/K (at 20 °C)[a] | |||||||||||||||||||||||||||||||||||
Thermal conductivity | 100 W/(m⋅K) | |||||||||||||||||||||||||||||||||||
Electrical resistivity | 62.4 nΩ⋅m (at 20 °C) | |||||||||||||||||||||||||||||||||||
Magnetic ordering | Ferromagnetic | |||||||||||||||||||||||||||||||||||
Young's modulus | 209 GPa | |||||||||||||||||||||||||||||||||||
Shear modulus | 75 GPa | |||||||||||||||||||||||||||||||||||
Bulk modulus | 180 GPa | |||||||||||||||||||||||||||||||||||
Speed of sound thin rod | 4720 m/s (at 20 °C) | |||||||||||||||||||||||||||||||||||
Poisson ratio | 0.31 | |||||||||||||||||||||||||||||||||||
Mohs hardness | 5.0 | |||||||||||||||||||||||||||||||||||
Vickers hardness | 1043 MPa | |||||||||||||||||||||||||||||||||||
Brinell hardness | 470–3000 MPa | |||||||||||||||||||||||||||||||||||
CAS Number | 7440-48-4 | |||||||||||||||||||||||||||||||||||
History | ||||||||||||||||||||||||||||||||||||
Discovery and first isolation | Georg Brandt (1735) | |||||||||||||||||||||||||||||||||||
Isotopes of cobalt | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Cobalt (Template:PronEng) is a hard, lustrous, grey dick, a chemical element with symbol Co. It is found in various metallic-lustred ores such as cobaltite (CoAsS), safflorite (CoAs2) and skutterudite (CoAs3), and their oxidation products such as pink erythrite ('cobalt glance': Co3(AsO4)2.8H2O) and sphaerocobaltite (CoCO3). Cobalt is used in the preparation of magnetic, wear-resistant, and high-strength alloys. Cobalt blue (cobalt(II) aluminate, CoAl2O4) gives a distinctive deep blue color to glass, ceramics, inks, paints, and varnishes.
Notable characteristics
Cobalt is a silver or gray ferromagnetic metal. Pure cobalt is not found in nature, but compounds of cobalt occur naturally in many forms. Small ayou suck dick7. The Curie temperature is 1388 K, and the magnetic moment is 1.6-1.7 Bohr magnetons per atom. In nature, it is frequently associated with nickel, and both are characteristic minor components of meteoric iron. Mammals require small amounts of cobalt which is the basis of vitamin B12. Cobalt-60, an artificially produced radioactive isotope of cobalt, is an important radioactive tracer and cancer-treatment agent. Cobalt has a relative permeability two thirds that of iron. Metallic cobalt occurs as two crystallographic structures hcp and fcc. The ideal transition temperature between hcp and fcc structures is 722 K, but in practice, the energy difference is so small that random intergrowth of the two is common. Cobalt has a hardness of 5.5 on the Mohs scale of mineral hardness.[9]
Common oxidation states of cobalt include +2 and +3, although compounds with oxidation state +1 are also known.
Isotopes
59Co is the only stable cobalt isotope. 22 radioisotopes have been characterized with the most stable being 60Co with a half-life of 5.2714 years, 57Co with a half-life of 271.79 days, 56Co with a half-life of 77.27 days, and 58Co with a half-life of 70.86 days. All of the remaining radioactive isotopes have half-lives that are less than 18 hours and the majority of these have half-lives that are less than 1 second. This element also has 4 meta states, all of which have half-lives less than 15 minutes.
The isotopes of cobalt range in atomic weight from 50 u (50Co) to 73 u (73Co). The primary decay mode for isotopes with atomic mass unit values less than that of the most abundant stable isotope, 59Co, is electron capture and the primary mode of decay for those of greater than 59 atomic mass units is beta decay. The primary decay products before 59Co are element 26 (iron) isotopes and the primary products after are element 28 (nickel) isotopes.
Cobalt radioisotopes in medicine
Cobalt-60 (Co-60 or 60Co) is a radioactive metal that is used in radiotherapy. It produces two gamma rays with energies of 1.17 MeV and 1.33 MeV. The 60Co source is about 2 cm in diameter and as a result produces a geometric penumbra, making the edge of the radiation field fuzzy. The metal has the unfortunate habit of producing a fine dust, causing problems with radiation protection. Cobalt-60 has a radioactive half-life of 5.27 years. This decrease in activity requires periodic replacement of the sources used in radiotherapy. This is one more reason why cobalt machines have been largely replaced by linear accelerators (linacs) in modern radiation therapy.
Cobalt-57 (Co-57 or 57Co) is a radioactive metal that is used in medical tests; it is used as a radiolabel for vitamin B12 uptake. It is useful for the Schilling test.[10]
Industrial uses for radioactive isotopes
Cobalt-60 (Co-60 or 60Co) is useful as a gamma ray source because it can be produced—in predictable quantity, and high activity—by simply exposing natural cobalt to neutrons in a reactor for a given time. It is used for
- sterilization of medical supplies, and medical waste;
- radiation treatment of foods for sterilization (cold pasteurization);
- industrial radiography (e.g., weld integrity radiographs);
- density measurements (e.g., concrete density measurements); and
- tank fill height switches.
Cobalt-57 is used as a source in Mössbauer spectroscopy.
Applications
- Alloys, such as
- Superalloys, for parts in gas turbine aircraft engines.
- Corrosion- and wear-resistant alloys.
- High speed steels.
- Cemented carbides (also called hard metals) and diamond tools.
- Magnets and magnetic recording media.
- Alnico magnets.
- Samarium-cobalt magnets.
- Catalysts for the petroleum and chemical industries, e.g. for hydroformylation and oxidation.
- Electroplating because of its appearance, hardness, and resistance to oxidation.
- Drying agents for paints, varnishes, and inks.
- Ground coats for porcelain enamels.
- Pigments (cobalt blue and cobalt green).
- Lithium ion battery electrodes.
- Steel-belted radial tires.
- Purification of histidine-tagged fusion proteins in biotechnology applications.
History
Cobalt compounds have been used for centuries to impart a rich blue color to glass, glazes, and ceramics. Cobalt has been detected in Egyptian sculpture and Persian jewelry from the third millennium BC, in the ruins of Pompeii (destroyed AD 79), and in China dating from the Tang dynasty (AD 618–907) and the Ming dynasty (AD 1368–1644)[11]. Cobalt glass ingots have been recovered from the Uluburun shipwreck, dating to the late 14th century BC.[12]
Swedish chemist George Brandt (1694–1768) is credited with isolating cobalt circa 1735. He was able to show that cobalt was the source of the blue color in glass, which previously had been attributed to the bismuth found with cobalt.
During the 19th century, cobalt blue was produced at the Norwegian Blaafarveværket (70-80% of world production), led by the Prussian industrialist Benjamin Wegner.
In 1938, John Livingood and Glenn Seaborg discovered cobalt-60.
The word cobalt is derived from the German kobalt, from kobold meaning "goblin", a term used for the ore of cobalt by miners. The first attempts at smelting the cobalt ores to produce cobalt metal failed, yielding cobalt(II) oxide instead. Also,because the primary ores of cobalt always contain arsenic, smelting the ore oxidized into the highly toxic and volatile oxide As4O6, which was inhaled by workers.
Occurrence
Cobalt is not found as a native metal but generally found in the form of ores. Cobalt is usually not mined alone, and tends to be produced as a by-product of nickel and copper mining activities. The main ores of cobalt are cobaltite, erythrite, glaucodot, and skutterudite.
In 2005, the Democratic Republic of the Congo was the top producer of cobalt with almost 40% world share, followed by Canada, Zambia, Russia, Brazil, and Cuba, reports the British Geological Survey.
Compounds
There is a wide variety of cobalt compounds. The +2 and +3 oxidation states are most prevalent, however cobalt(I) complexes are also known. Cobalt(II) salts form the red-pink [Co(OH2)6]2+ complex in aqueous solution. Adding excess chloride will changes the color from pink to blue, due to the formation of [CoCl4]2-. Cobalt oxides are antiferromagnetic at low temperature: CoO (Neel temperature 291 K) and Co3O4 (Neel temperature: 40 K), which is analogous to magnetite (Fe3O4), with a mixture of +2 and +3 oxidation states. The oxide Co2O3 is probably unstable; it has never been synthesized. Other than Co3O4 and the brown fluoride CoF3 (which is instantly hydrolyzed in water), all compounds containing cobalt in the +3 oxidation state are stabilized by complex ion formation.
- see also Category:Cobalt compounds
Biological role
Cobalt in small amounts is essential to many living organisms, including humans. Having 0.13 to 0.30 mg/kg of cobalt in soils markedly improves the health of grazing animals. Cobalt is a central component of the vitamin cobalamin, or vitamin B12.
Isotopes
60Co is a high-energy gamma ray emitter. Acute high-dose exposures to the gamma emissions can cause severe burns and death. Extended exposures increase the risk of morbidity or mortality from cancer.[13]
Nuclear weapon designs could intentionally incorporate 59Co, some of which would be activated in a nuclear explosion to produce 60Co. The 60Co, dispersed as nuclear fallout, creates what is sometimes called a dirty bomb or cobalt bomb.
Precautions
Although cobalt is an essential element for life in minute amounts, at higher levels of exposure it shows mutagenic and carcinogenic effects similar to nickel (see Cobalt Poisoning ).[14]
Powdered cobalt in metal form is a fire hazard.
References & notes
- ^ "cobalt". Oxford English Dictionary (2nd ed.). Oxford University Press. 1989.
- ^ "Standard Atomic Weights: Cobalt". CIAAW. 2017.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ a b Arblaster, John W. (2018). Selected Values of the Crystallographic Properties of Elements. Materials Park, Ohio: ASM International. ISBN 978-1-62708-155-9.
- ^ Co(–3) is known in Na3Co(CO)3; see John E. Ellis (2006). "Adventures with Substances Containing Metals in Negative Oxidation States". Inorganic Chemistry. 45 (8). doi:10.1021/ic052110i.
- ^ a b c d Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 28. ISBN 978-0-08-037941-8.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1117–1119. ISBN 978-0-08-037941-8.
- ^ Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ "Properties and Facts for Cobalt". Retrieved 2008-09-19.
- ^ JPNM Physics Isotopes
- ^ Encyclopedia Britannica Online.
- ^ Pulak, Cemal (1998). "The Uluburun shipwreck: an overview". International Journal of Nautical Archaeology. 27 (3): 188–224. doi:10.1111/j.1095-9270.1998.tb00803.x.
{{cite journal}}
: Cite has empty unknown parameters:|month=
and|coauthors=
(help) - ^ The Juarez accident
- ^ 11th ROC: Cobalt Sulfate
External links
- National Pollutant Inventory - Cobalt fact sheet
- WebElements.com – Cobalt
- London celebrates 50 years of Cobalt-60 Radiotherapy
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).