Jump to content

Isotopes of calcium

From Wikipedia, the free encyclopedia
(Redirected from Calcium-61)

Isotopes of calcium (20Ca)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
40Ca 96.9% stable
41Ca trace 9.94×104 y ε 41K
42Ca 0.647% stable
43Ca 0.135% stable
44Ca 2.09% stable
45Ca synth 163 d β 45Sc
46Ca 0.004% stable
47Ca synth 4.5 d β 47Sc
48Ca 0.187% 6.4×1019 y ββ 48Ti
Standard atomic weight Ar°(Ca)

Calcium (20Ca) has 26 known isotopes, ranging from 35Ca to 60Ca. There are five stable isotopes (40Ca, 42Ca, 43Ca, 44Ca and 46Ca), plus one isotope (48Ca) with such a long half-life that it is for all practical purposes stable. The most abundant isotope, 40Ca, as well as the rare 46Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, 41Ca, with half-life 99,400 years. Unlike cosmogenic isotopes that are produced in the air, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still strong enough. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar system anomalies. The most stable artificial isotopes are 45Ca with half-life 163 days and 47Ca with half-life 4.5 days. All other calcium isotopes have half-lives of minutes or less.[4]

Stable 40Ca comprises about 97% of natural calcium and is mainly created by nucleosynthesis in large stars. Similarly to 40Ar, however, some atoms of 40Ca are radiogenic, created through the radioactive decay of 40K. While K–Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature initially impeded the proliferation of K-Ca dating in early studies, with only a handful of studies in the 20th century. Modern techniques using increasingly precise Thermal-Ionization (TIMS) and Collision-Cell Multi-Collector Inductively-coupled plasma mass spectrometry (CC-MC-ICP-MS) techniques, however, have been used for successful K–Ca age dating,[5][6] as well as determining K losses from the lower continental crust[7] and for source-tracing calcium contributions from various geologic reservoirs[8][9] similar to Rb-Sr.

Stable isotope variations of calcium (most typically 44Ca/40Ca or 44Ca/42Ca, denoted as 'δ44Ca' and 'δ44/42Ca' in delta notation) are also widely used across the natural sciences for a number of applications, ranging from early determination of osteoporosis[10] to quantifying volcanic eruption timescales.[11] Other applications include: quantifying carbon sequestration efficiency in CO2 injection sites[12] and understanding ocean acidification,[13] exploring both ubiquitous and rare magmatic processes, such as formation of granites[14] and carbonatites,[15] tracing modern and ancient trophic webs including in dinosaurs,[16][17][18] assessing weaning practices in ancient humans,[19] and a plethora of other emerging applications.

List of isotopes

[edit]


Nuclide
Z N Isotopic mass (Da)[20]
[n 1]
Half-life[1]
[n 2]
Decay
mode
[1]
[n 3]
Daughter
isotope

[n 4]
Spin and
parity[1]
[n 5][n 6]
Natural abundance (mole fraction)
Normal proportion[1] Range of variation
35Ca 20 15 35.00557(22)# 25.7(2) ms β+, p (95.8%) 34Ar 1/2+#
β+, 2p (4.2%) 33Cl
β+ (rare) 35K
36Ca 20 16 35.993074(43) 100.9(13) ms β+, p (51.2%) 35Ar 0+
β+ (48.8%) 36K
37Ca 20 17 36.98589785(68) 181.0(9) ms β+, p (76.8%) 36Ar 3/2+
β+ (23.2%) 37K
38Ca 20 18 37.97631922(21) 443.70(25) ms β+ 38K 0+
39Ca 20 19 38.97071081(64) 860.3(8) ms β+ 39K 3/2+
40Ca[n 7] 20 20 39.962590850(22) Observationally stable[n 8] 0+ 0.9694(16) 0.96933–0.96947
41Ca 20 21 40.96227791(15) 9.94(15)×104 y EC 41K 7/2− Trace[n 9]
42Ca 20 22 41.95861778(16) Stable 0+ 0.00647(23) 0.00646–0.00648
43Ca 20 23 42.95876638(24) Stable 7/2− 0.00135(10) 0.00135–0.00135
44Ca 20 24 43.95548149(35) Stable 0+ 0.0209(11) 0.02082–0.02092
45Ca 20 25 44.95618627(39) 162.61(9) d β 45Sc 7/2−
46Ca 20 26 45.9536877(24) Observationally stable[n 10] 0+ 4×10−5 4×10−5–4×10−5
47Ca 20 27 46.9545411(24) 4.536(3) d β 47Sc 7/2−
48Ca[n 11][n 12] 20 28 47.952522654(18) 5.6(10)×1019 y ββ[n 13][n 14] 48Ti 0+ 0.00187(21) 0.00186–0.00188
49Ca 20 29 48.95566263(19) 8.718(6) min β 49Sc 3/2−
50Ca 20 30 49.9574992(17) 13.45(5) s β 50Sc 0+
51Ca 20 31 50.96099566(56) 10.0(8) s β 51Sc 3/2−
β, n? 50Sc
52Ca 20 32 51.96321365(72) 4.6(3) s β (>98%) 52Sc 0+
β, n (<2%) 51Sc
53Ca 20 33 52.968451(47) 461(90) ms β (60%) 53Sc 1/2−#
β, n (40%) 52Sc
54Ca 20 34 53.972989(52) 90(6) ms β 54Sc 0+
β, n? 53Sc
β, 2n? 52Sc
55Ca 20 35 54.97998(17) 22(2) ms β 55Sc 5/2−#
β, n? 54Sc
β, 2n? 53Sc
56Ca 20 36 55.98550(27) 11(2) ms β 56Sc 0+
β, n? 55Sc
β, 2n? 54Sc
57Ca 20 37 56.99296(43)# 8# ms [>620 ns] β? 57Sc 5/2−#
β, n? 56Sc
β, 2n? 55Sc
58Ca 20 38 57.99836(54)# 4# ms [>620 ns] β? 58Sc 0+
β, n? 57Sc
β, 2n? 56Sc
59Ca 20 39 59.00624(64)# 5# ms [>400 ns] β? 59Sc 5/2−#
β, n? 58Sc
β, 2n? 57Sc
60Ca 20 40 60.01181(75)# 2# ms [>400 ns] β? 60Sc 0+
β, n? 59Sc
β, 2n? 58Sc
This table header & footer:
  1. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  3. ^ Modes of decay:
    EC: Electron capture


    n: Neutron emission
    p: Proton emission
  4. ^ Bold symbol as daughter – Daughter product is stable.
  5. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  6. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. ^ Heaviest observationally stable nuclide with equal numbers of protons and neutrons
  8. ^ Believed to undergo double electron capture to 40Ar with a half-life no less than 9.9×1021 y
  9. ^ Cosmogenic nuclide
  10. ^ Believed to undergo ββ decay to 46Ti
  11. ^ Primordial radionuclide
  12. ^ Believed to be capable of undergoing triple beta decay with very long partial half-life
  13. ^ Lightest nuclide known to undergo double beta decay
  14. ^ Theorized to also undergo β decay to 48Sc with a partial half-life exceeding 1.1+0.8
    −0.6
    ×1021 years[21]

Calcium-48

[edit]
About 2 g of calcium-48

Calcium-48 is a doubly magic nucleus with 28 neutrons; unusually neutron-rich for a light primordial nucleus. It decays via double beta decay with an extremely long half-life of about 6.4×1019 years, though single beta decay is also theoretically possible.[22] This decay can analyzed with the sd nuclear shell model, and it is more energetic (4.27 MeV) than any other double beta decay.[23] It can also be used as a precursor for neutron-rich and superheavy nuclei.[24][25]

Calcium-60

[edit]

Calcium-60 is the heaviest known isotope as of 2020.[1] First observed in 2018 at Riken alongside 59Ca and seven isotopes of other elements,[26] its existence suggests that there are additional even-N isotopes of calcium up to at least 70Ca, while 59Ca is probably the last bound isotope with odd N.[27] Earlier predictions had estimated the neutron drip line to occur at 60Ca, with 59Ca unbound.[26]

In the neutron-rich region, N = 40 becomes a magic number, so 60Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the 68Ni isotone.[28][29] However, subsequent spectroscopic measurements of the nearby nuclides 56Ca, 58Ca, and 62Ti instead predict that it should lie on the island of inversion known to exist around 64Cr.[29][30]

References

[edit]
  1. ^ a b c d e f Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Calcium". CIAAW. 1983.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  5. ^ Marshall, B. D.; DePaolo, D. J. (1982-12-01). "Precise age determinations and petrogenetic studies using the KCa method". Geochimica et Cosmochimica Acta. 46 (12): 2537–2545. doi:10.1016/0016-7037(82)90376-3. ISSN 0016-7037.
  6. ^ admin. "K-Ca dating and Ca isotope composition of the oldest Solar System lava, Erg Chech 002 | Geochemical Perspectives Letters". Retrieved 2024-10-16.
  7. ^ admin. "Radiogenic Ca isotopes confirm post-formation K depletion of lower crust | Geochemical Perspectives Letters". Retrieved 2024-10-16.
  8. ^ Antonelli, Michael A.; DePaolo, Donald J.; Christensen, John N.; Wotzlaw, Jörn-Frederik; Pester, Nicholas J.; Bachmann, Olivier (2021-09-16). "Radiogenic 40 Ca in Seawater: Implications for Modern and Ancient Ca Cycles". ACS Earth and Space Chemistry. 5 (9): 2481–2492. doi:10.1021/acsearthspacechem.1c00179. ISSN 2472-3452.
  9. ^ Davenport, Jesse; Caro, Guillaume; France-Lanord, Christian (2022-12-01). "Decoupling of physical and chemical erosion in the Himalayas revealed by radiogenic Ca isotopes". Geochimica et Cosmochimica Acta. 338: 199–219. doi:10.1016/j.gca.2022.10.031. ISSN 0016-7037.
  10. ^ Eisenhauer, A.; Müller, M.; Heuser, A.; Kolevica, A.; Glüer, C. -C.; Both, M.; Laue, C.; Hehn, U. v.; Kloth, S.; Shroff, R.; Schrezenmeir, J. (2019-06-01). "Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis". Bone Reports. 10: 100200. doi:10.1016/j.bonr.2019.100200. ISSN 2352-1872. PMC 6453776. PMID 30997369.
  11. ^ Antonelli, Michael A.; Mittal, Tushar; McCarthy, Anders; Tripoli, Barbara; Watkins, James M.; DePaolo, Donald J. (2019-10-08). "Ca isotopes record rapid crystal growth in volcanic and subvolcanic systems". Proceedings of the National Academy of Sciences. 116 (41): 20315–20321. doi:10.1073/pnas.1908921116. ISSN 0027-8424. PMC 6789932. PMID 31548431.
  12. ^ Pogge von Strandmann, Philip A. E.; Burton, Kevin W.; Snæbjörnsdóttir, Sandra O.; Sigfússon, Bergur; Aradóttir, Edda S.; Gunnarsson, Ingvi; Alfredsson, Helgi A.; Mesfin, Kiflom G.; Oelkers, Eric H.; Gislason, Sigurður R. (2019-04-30). "Rapid CO2 mineralisation into calcite at the CarbFix storage site quantified using calcium isotopes". Nature Communications. 10 (1): 1983. doi:10.1038/s41467-019-10003-8. ISSN 2041-1723. PMC 6491611. PMID 31040283.
  13. ^ Fantle, Matthew S.; Ridgwell, Andy (2020-08-05). "Towards an understanding of the Ca isotopic signal related to ocean acidification and alkalinity overshoots in the rock record". Chemical Geology. 547: 119672. doi:10.1016/j.chemgeo.2020.119672. ISSN 0009-2541.
  14. ^ Antonelli, Michael A.; Yakymchuk, Chris; Schauble, Edwin A.; Foden, John; Janoušek, Vojtěch; Moyen, Jean-François; Hoffmann, Jan; Moynier, Frédéric; Bachmann, Olivier (2023-04-15). "Granite petrogenesis and the δ44Ca of continental crust". Earth and Planetary Science Letters. 608: 118080. doi:10.1016/j.epsl.2023.118080. hdl:20.500.11850/603069. ISSN 0012-821X.
  15. ^ admin. "Calcium isotope fractionation during melt immiscibility and carbonatite petrogenesis | Geochemical Perspectives Letters". Retrieved 2024-10-16.
  16. ^ Skulan, Joseph; DePaolo, Donald J.; Owens, Thomas L. (1997-06-01). "Biological control of calcium isotopic abundances in the global calcium cycle". Geochimica et Cosmochimica Acta. 61 (12): 2505–2510. doi:10.1016/S0016-7037(97)00047-1. ISSN 0016-7037.
  17. ^ admin. "Calcium stable isotopes place Devonian conodonts as first level consumers | Geochemical Perspectives Letters". Retrieved 2024-10-16.
  18. ^ Hassler, A.; Martin, J. E.; Amiot, R.; Tacail, T.; Godet, F. Arnaud; Allain, R.; Balter, V. (2018-04-11). "Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 285 (1876): 20180197. doi:10.1098/rspb.2018.0197. ISSN 0962-8452. PMC 5904318. PMID 29643213.
  19. ^ Tacail, Théo; Thivichon-Prince, Béatrice; Martin, Jeremy E.; Charles, Cyril; Viriot, Laurent; Balter, Vincent (2017-06-13). "Assessing human weaning practices with calcium isotopes in tooth enamel". Proceedings of the National Academy of Sciences. 114 (24): 6268–6273. doi:10.1073/pnas.1704412114. ISSN 0027-8424. PMC 5474782. PMID 28559355.
  20. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  21. ^ Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay 48Ca → 48Sc". EPL. 46 (5): 577. Bibcode:1999EL.....46..577A. doi:10.1209/epl/i1999-00301-2. S2CID 250836275.
  22. ^ Arnold, R.; et al. (NEMO-3 Collaboration) (2016). "Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector". Physical Review D. 93 (11): 112008. arXiv:1604.01710. Bibcode:2016PhRvD..93k2008A. doi:10.1103/PhysRevD.93.112008.
  23. ^ Balysh, A.; et al. (1996). "Double Beta Decay of 48Ca". Physical Review Letters. 77 (26): 5186–5189. arXiv:nucl-ex/9608001. Bibcode:1996PhRvL..77.5186B. doi:10.1103/PhysRevLett.77.5186. PMID 10062737.
  24. ^ Notani, M.; et al. (2002). "New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64A MeV 48Ca beam". Physics Letters B. 542 (1–2): 49–54. Bibcode:2002PhLB..542...49N. doi:10.1016/S0370-2693(02)02337-7.
  25. ^ Oganessian, Yu. Ts.; et al. (October 2006). "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions". Physical Review C. 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. doi:10.1103/PhysRevC.74.044602.
  26. ^ a b Tarasov, O. B.; Ahn, D. S.; Bazin, D.; et al. (11 July 2018). "Discovery of 60Ca and Implications For the Stability of 70Ca". Physical Review Letters. 121 (2): 022501. doi:10.1103/PhysRevLett.121.022501. PMID 30085743.
  27. ^ Neufcourt, Léo; Cao, Yuchen; Nazarewicz, Witold; et al. (14 February 2019). "Neutron Drip Line in the Ca Region from Bayesian Model Averaging". Physical Review Letters. 122 (6): 062502. arXiv:1901.07632. doi:10.1103/PhysRevLett.122.062502. PMID 30822058.
  28. ^ Gade, A.; Janssens, R. V. F.; Weisshaar, D.; et al. (21 March 2014). "Nuclear Structure Towards N = 40 60Ca: In-Beam γ -Ray Spectroscopy of 58, 60Ti". Physical Review Letters. 112 (11): 112503. arXiv:1402.5944. doi:10.1103/PhysRevLett.112.112503. PMID 24702356.
  29. ^ a b Cortés, M.L.; Rodriguez, W.; Doornenbal, P.; et al. (January 2020). "Shell evolution of N = 40 isotones towards 60Ca: First spectroscopy of 62Ti". Physics Letters B. 800: 135071. arXiv:1912.07887. doi:10.1016/j.physletb.2019.135071.
  30. ^ Chen, S.; Browne, F.; Doornenbal, P.; et al. (August 2023). "Level structures of 56, 58Ca cast doubt on a doubly magic 60Ca". Physics Letters B. 843: 138025. arXiv:2307.07077. doi:10.1016/j.physletb.2023.138025.

Further reading

[edit]
[edit]