Jump to content

Pentagalloylglucose

From Wikipedia, the free encyclopedia
(Redirected from C41H32O26)

Pentagalloylglucose
Chemical structure of pentagalloylglucose
Names
IUPAC name
β-D-Glucopyranose pentakis(3,4,5-trihydroxybenzoate)
Systematic IUPAC name
(2S,3R,4S,5R,6R)-6-{[(3,4,5-Trihydroxybenzoyl)oxy]methyl}oxane-2,3,4,5-tetrayl tetrakis(3,4,5-trihydroxybenzoate)
Other names
1,2,3,4,6-Penta-O-galloyl-β-D-glucose
1,2,3,4,6-Pentakis-O-galloyl-beta-D-glucose
beta-Penta-O-galloyl-glucose
PGG
1,2,3,4,6-Penta-O-galloyl-beta-D-glucose
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.113.489 Edit this at Wikidata
UNII
  • InChI=1S/C41H32O26/c42-17-1-12(2-18(43)28(17)52)36(57)62-11-27-33(64-37(58)13-3-19(44)29(53)20(45)4-13)34(65-38(59)14-5-21(46)30(54)22(47)6-14)35(66-39(60)15-7-23(48)31(55)24(49)8-15)41(63-27)67-40(61)16-9-25(50)32(56)26(51)10-16/h1-10,27,33-35,41-56H,11H2/t27-,33-,34+,35-,41+/m1/s1 checkY
    Key: QJYNZEYHSMRWBK-NIKIMHBISA-N checkY
  • C1=C(C=C(C(=C1O)O)O)C(=O)OCC2C(C(C(C(O2)OC(=O)C3=CC(=C(C(=C3)O)O)O)OC(=O)C4=CC(=C(C(=C4)O)O)O)OC(=O)C5=CC(=C(C(=C5)O)O)O)OC(=O)C6=CC(=C(C(=C6)O)O)O
Properties
C41H32O26
Molar mass 940.681 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Pentagalloylglucose, or more specificially 1,2,3,4,6-penta-O-galloyl-β-D-glucose, is the pentagallic acid ester of glucose. It is a gallotannin and the precursor of ellagitannins.[1]

Pentagalloylglucose can precipitate proteins,[2] including human salivary α-amylase.[3]

Natural occurrence

[edit]

Pentagalloylglucose can be found in Punica granatum (pomegranate),[4] Elaeocarpus sylvestris,[5] Rhus typhina (Staghorn sumac),[6] Paeonia suffruticosa (Tree Peony),.,[7] Mangifera indica (mango) [8] and Bouea macrophylla Griffith (maprang).[9]

Biosynthesis

[edit]

The enzyme beta-glucogallin-tetrakisgalloylglucose O-galloyltransferase uses 1-O-galloyl-β-D-glucose and 1,2,3,6-tetrakis-O-galloyl-β-D-glucose to produce D-glucose and pentagalloylglucose.

Metabolism

[edit]

Tellimagrandin II is formed from pentagalloylglucose by oxidative dehydrogenation and coupling of 2 galloyl groups.

β-glucogallin: 1,2,3,4,6-pentagalloyl-β-D-glucose galloyltransferase is an enzyme found in the leaves of Rhus typhina that catalyzes the galloylation of 1,2,3,4,6-penta-O-galloyl-β-D-glucose to 3-O-digalloyl-1,2,4,6-tetra-O-galloyl-β-D-glucose (hexagalloylglucose).[6]

Chemistry

[edit]

Pentagalloylglucose can undergo oxidation reactions which are depending on the pH.[10]

Research

[edit]

Pentagalloylglucose has been studied for its potential use as an antimicrobial, anti-inflammatory, anticarcinogenic, antidiabetic, and antioxidant.[11] It has also been studied for radioprotection.[5] This compound helps stabilize the elastin and collagen in vascular tissues[12] and restores the biomechanical properties of arterial ECM.[13] In addition, pentagalloylglucose has shown to reduce arterial calcification and helps promote extracellular matrix preservation in animal models of abdominal aortic aneurysm.[14] In vitro studies with mouse C2C12 myoblast cells have shown the PGG helps in lowering reactive oxygen species (ROS) and matrix metalloproteinase-2 (MMP-2) expression in a dose-dependent manner. [15]

References

[edit]
  1. ^ Cammann J, Denzel K, Schilling G, Gross GG (August 1989). "Biosynthesis of gallotannins: beta-glucogallin-dependent formation of 1,2,3,4,6-pentagalloylglucose by enzymatic galloylation of 1,2,3,6-tetragalloylglucose". Archives of Biochemistry and Biophysics. 273 (1): 58–63. doi:10.1016/0003-9861(89)90161-6. PMID 2757399.
  2. ^ Hagerman AE, Rice ME, Ritchard NT (1998). "Mechanisms of Protein Precipitation for Two Tannins, Pentagalloyl Glucose and Epicatechin16(4→8) Catechin (Procyanidin)". Journal of Agricultural and Food Chemistry. 46 (7): 2590–2595. doi:10.1021/jf971097k.
  3. ^ Gyémánt G, Zajácz A, Bécsi B, Ragunath C, Ramasubbu N, Erdodi F, Batta G, Kandra L (February 2009). "Evidence for pentagalloyl glucose binding to human salivary alpha-amylase through aromatic amino acid residues". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics. 1794 (2): 291–6. doi:10.1016/j.bbapap.2008.10.012. PMID 19038368.
  4. ^ Tanaka T, Nonaka GI, Nishioka I (1985). "Punicafolin, an ellagitannin from the leaves of Punica granatum". Phytochemistry. 24 (9): 2075. Bibcode:1985PChem..24.2075T. doi:10.1016/S0031-9422(00)83125-8.
  5. ^ a b Park E, Lee NH, Baik JS, Jee Y (August 2008). "Elaeocarpus sylvestris modulates gamma-ray-induced immunosuppression in mice: implications in radioprotection". Phytotherapy Research. 22 (8): 1046–51. doi:10.1002/ptr.2430. PMID 18570220. S2CID 44278609.
  6. ^ a b Niemetz R, Gross GG (1998). "Gallotannin biosynthesis: Purification of β-glucogallin: 1,2,3,4,6-pentagalloyl-β-d-glucose galloyltransferase from sumac leavesfn1fn1In honour of Professor G. H. Neil Towers' 75th birthday". Phytochemistry. 49 (2): 327. Bibcode:1998PChem..49..327N. doi:10.1016/S0031-9422(98)00014-4.
  7. ^ Fujiwara H, Tabuchi M, Yamaguchi T, Iwasaki K, Furukawa K, Sekiguchi K, Ikarashi Y, Kudo Y, Higuchi M, Saido TC, Maeda S, Takashima A, Hara M, Yaegashi N, Kase Y, Arai H (June 2009). "A traditional medicinal herb Paeonia suffruticosa and its active constituent 1,2,3,4,6-penta-O-galloyl-beta-D-glucopyranose have potent anti-aggregation effects on Alzheimer's amyloid beta proteins in vitro and in vivo". Journal of Neurochemistry. 109 (6): 1648–57. doi:10.1111/j.1471-4159.2009.06069.x. PMID 19457098. S2CID 205620592.
  8. ^ Torres-León C, Rojas R, Aguilar C (2017). "Extraction of antioxidants from mango seedkernel: Optimization assisted by microwave". Food and Bioproducts Processing. 105: 188–196. doi:10.1016/j.fbp.2017.07.005. S2CID 102513001.
  9. ^ Kantapan J, Paksee S, Chawapun P, Sangthong P, Dechsupa N (2020). "Pentagalloyl Glucose- and Ethyl Gallate-Rich Extract from Maprang Seeds Induce Apoptosis in MCF-7 Breast Cancer Cells through Mitochondria-Mediated Pathway". Evidence-Based Complementary and Alternative Medicine. 2020: 1–19. doi:10.1155/2020/5686029. PMC 7193289. PMID 32382295.
  10. ^ Chen Y, Hagerman AE (February 2005). "Reaction pH and protein affect the oxidation products of beta-pentagalloyl glucose". Free Radical Research. 39 (2): 117–24. doi:10.1080/10715760400013789. PMID 15763959. S2CID 85098105.
  11. ^ Torres-Leon C, Ventura-Sobrevilla J, Serna-Cock L, Ascacio-Valdes JA, Contreras-Esquivel J, Aguilar CN (2017). "Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties". Journal of Functional Foods. 37: 176–189. doi:10.1016/j.jff.2017.07.045.
  12. ^ Patnaik SS, Simionescu DT, Goergen CJ, Hoyt K, Sirsi S, Finol EA (January 2019). "Pentagalloyl Glucose and Its Functional Role in Vascular Health: Biomechanics and Drug-Delivery Characteristics". Annals of Biomedical Engineering. 47 (1): 39–59. doi:10.1007/s10439-018-02145-5. PMC 6318003. PMID 30298373.
  13. ^ Patnaik SS, Piskin S, Pillalamarri NR, Romero G, Escobar GP, Sprague E, Finol EA (2019-07-03). "Biomechanical Restoration Potential of Pentagalloyl Glucose after Arterial Extracellular Matrix Degeneration". Bioengineering. 6 (3): 58. doi:10.3390/bioengineering6030058. ISSN 2306-5354. PMC 6783915. PMID 31277241.
  14. ^ Anderson JL, Niedert EE, Patnaik SS, Tang R, Holloway RL, Osteguin V, Finol EA, Goergen CJ (January 2021). "Animal Model Dependent Response to Pentagalloyl Glucose in Murine Abdominal Aortic Injury". Journal of Clinical Medicine. 10 (2): 219. doi:10.3390/jcm10020219. PMC 7827576. PMID 33435461.
  15. ^ Arnold F, Muzzio N, Patnaik SS, Finol EA, Romero G (2021-05-24). "Pentagalloyl Glucose-Laden Poly(lactide-co-glycolide) Nanoparticles for the Biomechanical Extracellular Matrix Stabilization of an In Vitro Abdominal Aortic Aneurysm Model". ACS Applied Materials & Interfaces. 13 (22): 25771–25782. doi:10.1021/acsami.1c05344. ISSN 1944-8252. PMID 34030437. S2CID 235199265.