Jump to content

Isotopes of bismuth

From Wikipedia, the free encyclopedia
(Redirected from Bismuth-210m)

Isotopes of bismuth (83Bi)
Main isotopes[1] Decay
abun­dance half-life (t1/2) mode pro­duct
207Bi synth 31.55 y β+ 207Pb
208Bi synth 3.68×105 y β+ 208Pb
209Bi 100% 2.01×1019 y α 205Tl
210Bi trace 5.012 d β 210Po
α 206Tl
210mBi synth 3.04×106 y α 206Tl
Standard atomic weight Ar°(Bi)

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

List of isotopes

[edit]


Nuclide
[n 1]
Historic
name
Z N Isotopic mass (Da)[4]
[n 2][n 3]
Half-life[1]
[n 4]
Decay
mode
[1]
[n 5]
Daughter
isotope

[n 6]
Spin and
parity[1]
[n 7][n 8]
Isotopic
abundance
Excitation energy[n 8]
184Bi[5] 83 101 184.00135(13)# 6.6(15) ms α 180Tl 3+#
184mBi[n 9] 150(100)# keV 13(2) ms α 180Tl 10−#
185Bi[6] 83 102 184.99760(9)# 2.8+2.3
−1.0
 μs
p (92%) 184Pb (1/2+)
α (8%) 181Tl
185mBi 70(50)# keV 58(2) μs IT 185Bi (7/2−, 9/2−)
186Bi 83 103 185.996623(18) 14.8(7) ms α (99.99%) 182Tl (3+)
β+ (?%) 186Pb
β+, SF (0.011%) (various)
186mBi[n 9] 170(100)# keV 9.8(4) ms α (99.99%) 182Tl (10−)
β+ (?%) 186Pb
β+, SF (0.011%) (various)
187Bi 83 104 186.993147(11) 37(2) ms α 183Tl (9/2−)
187m1Bi 108(8) keV 370(20) μs α 183Tl 1/2+
187m2Bi 252(3) keV 7(5) μs IT 187Bi (13/2+)
188Bi 83 105 187.992276(12) 60(3) ms α 184Tl (3+)
β+, SF (0.0014%) (various)
188m1Bi 66(30) keV >5 μs 7+#
188m2Bi 153(30) keV 265(15) ms α 184Tl (10−)
β+, SF (0.0046%) (various)
189Bi 83 106 188.989195(22) 688(5) ms α 185Tl 9/2−
189m1Bi 184(5) keV 5.0(1) ms α (83%) 185Tl 1/2+
IT (17%) 189Bi
189m2Bi 357.6(5) keV 880(50) ns IT 189Bi 13/2+
190Bi 83 107 189.988625(23) 6.3(1) s α (77%) 186Tl (3+)
β+ (23%) 190Pb
β+, SF (6×10-6%) (various)
190m1Bi 120(40) keV 6.2(1) s α (70%) 186Tl 10−
β+ (30%) 190Pb
β+, SF (4×10-6%) (various)
190m2Bi 121(15) keV 175(8) ns IT 190Bi (5−)
190m3Bi 394(40) keV 1.3(8) μs IT 190Bi (8−)
191Bi 83 108 190.985787(8) 12.4(3) s α (51%) 187Tl 9/2−
β+ (49%) 191Pb
191m1Bi 242(4) keV 125(8) ms α (68%) 187Tl 1/2+
IT (?%) 191Bi
β+ (?%) 191Pb
191m2Bi 429.7(5) keV 562(10) ns IT 191Bi 13/2+
191m3Bi 1875(25)# keV 400(40) ns IT 191Bi 25/2-#
192Bi 83 109 191.98547(3) 34.6(9) s β+ (88%) 192Pb (3+)
α (12%) 188Tl
192mBi 140(30) keV 39.6(4) s β+ (90%) 192Pb 10−
α (10%) 188Tl
193Bi 83 110 192.982947(8) 63.6(30) s β+ (96.5%) 193Pb 9/2−
α (3.5%) 189Tl
193m1Bi 305(6) keV 3.20(14) s α (84%) 189Tl 1/2+
β+ (16%) 193Pb
193m2Bi 605.53(18) keV 153(10) ns IT 193Bi 13/2+
193m3Bi 2349.6(6) keV 85(3) μs IT 193Bi 29/2+
193m4Bi 2405.1(7) keV 3.02(8) μs IT 193Bi (29/2−)
194Bi 83 111 193.982799(6) 95(3) s β+ (99.54%) 194Pb 3+
α (0.46%) 190Tl
194m1Bi 150(50) keV 125(2) s β+ 194Pb (6+, 7+)
194m2Bi 163(4) keV 115(4) s β+ (99.80%) 194Pb (10−)
α (0.20%) 190Tl
195Bi 83 112 194.980649(6) 183(4) s β+ (99.97%) 195Pb 9/2−
α (0.030%) 191Tl
195m1Bi 399(6) keV 87(1) s β+ (67%) 195Pb 1/2+
α (33%) 191Tl
195m2Bi 2381.0(5) keV 614(5) ns IT 195Bi (29/2−)
195m3Bi 2615.9(5) keV 1.49(1) μs IT 195Bi 29/2+
196Bi 83 113 195.980667(26) 5.13(20) min β+ 196Pb (3+)
α (0.00115%) 192Tl
196m1Bi 166.4(29) keV 0.6(5) s IT 196Bi (7+)
196m2Bi 272(3) keV 4.00(5) min β+ (74.2%) 196Pb (10−)
IT (25.8%) 196Bi
α (3.8×10−4%) 196Bi
197Bi 83 114 196.978865(9) 9.33(50) min β+ 197Pb 9/2−
197m1Bi 533(12) keV 5.04(16) min α (55%) 193Tl 1/2+
β+ (45%) 197Pb
197m2Bi 2403(12) keV 263(13) ns IT 197Bi (29/2−)
197m3Bi 2929.5(5) keV 209(30) ns IT 197Bi (31/2−)
198Bi 83 115 197.979201(30) 10.3(3) min β+ 198Pb 3+
198m1Bi 290(40) keV 11.6(3) min β+ 198Pb 7+
198m2Bi 540(40) keV 7.7(5) s IT 198Bi 10−
199Bi 83 116 198.977673(11) 27(1) min β+ 199Pb 9/2−
199m1Bi 667(3) keV 24.70(15) min β+ (>98%) 199Pb (1/2+)
IT (<2%) 199Bi
α (0.01%) 195Tl
199m2Bi 1962(23) keV 0.10(3) μs IT 199Bi 25/2+#
199m3Bi 2548(23) keV 168(13) ns IT 199Bi 29/2−#
200Bi 83 117 199.978131(24) 36.4(5) min β+ 200Pb 7+
200m1Bi[n 9] 100(70)# keV 31(2) min β+ (?%) 200Pb (2+)
IT (?%) 200Bi
200m2Bi 428.20(10) keV 400(50) ms IT 200Bi (10−)
201Bi 83 118 200.976995(13) 103(3) min β+ 201Pb 9/2−
201m1Bi 846.35(18) keV 57.5(21) min β+ 201Pb 1/2+
α (?%) 197Tl
201m2Bi 1973(23) keV 118(28) ns IT 201Bi 25/2+#
201m3Bi 2012(23) keV 105(75) ns IT 201Bi 27/2+#
201m4Bi 2781(23) keV 124(4) ns IT 201Bi 29/2−#
202Bi 83 119 201.977723(15) 1.72(5) h β+ 202Pb 5+
α (<10−5%) 198Tl
202m1Bi 625(12) keV 3.04(6) μs IT 202Bi 10−#
202m2Bi 2617(12) keV 310(50) ns IT 202Bi (17+)
203Bi 83 120 202.976892(14) 11.76(5) h β+ 203Pb 9/2−
203m1Bi 1098.21(9) keV 305(5) ms IT 203Bi 1/2+
203m2Bi 2041.5(6) keV 194(30) ns IT 203Bi 25/2+
204Bi 83 121 203.977836(10) 11.22(10) h β+ 204Pb 6+
204m1Bi 805.5(3) keV 13.0(1) ms IT 204Bi 10−
204m2Bi 2833.4(11) keV 1.07(3) ms IT 204Bi 17+
205Bi 83 122 204.977385(5) 14.91(7) d β+ 205Pb 9/2−
205m1Bi 1497.17(9) keV 7.9(7) μs IT 205Bi 1/2+
205m2Bi 2064.7(4) keV 100(6) ns IT 205Bi 21/2+
205m3Bi 2139.0(7) keV 220(25) ns IT 205Bi 25/2+
206Bi 83 123 205.978499(8) 6.243(3) d β+ 206Pb 6+
206m1Bi 59.897(17) keV 7.7(2) μs IT 206Bi 4+
206m2Bi 1044.8(7) keV 890(10) μs IT 206Bi 10−
206m3Bi 9233.3(8) keV 155(15) ns IT 206Bi (28−)
206m4Bi 10170.5(8) keV >2 μs IT 206Bi (31+)
207Bi 83 124 206.9784706(26) 31.22(17) y β+ 207Pb 9/2−
207mBi 2101.61(16) keV 182(6) μs IT 207Bi 21/2+
208Bi 83 125 207.9797421(25) 3.68(4)×105 y β+ 208Pb 5+
208mBi 1571.1(4) keV 2.58(4) ms IT 208Bi 10−
209Bi
[n 10][n 11]
83 126 208.9803986(15) 2.01(8)×1019 y
[n 12]
α 205Tl 9/2− 1.0000
210Bi Radium E 83 127 209.9841202(15) 5.012(5) d β 210Po 1− Trace[n 13]
α (1.32×10−4%) 206Tl
210mBi 271.31(11) keV 3.04(6)×106 y α 206Tl 9−
211Bi Actinium C 83 128 210.987269(6) 2.14(2) min α (99.72%) 207Tl 9/2− Trace[n 14]
β (0.276%) 211Po
211mBi 1257(10) keV 1.4(3) μs IT 211Bi (25/2−)
212Bi Thorium C 83 129 211.991285(2) 60.55(6) min β (64.05%) 212Po 1− Trace[n 15]
α (35.94%) 208Tl
β, α (0.014%) 208Pb
212m1Bi 250(30) keV 25.0(2) min α (67%) 208Tl (8−, 9−)
β, α (30%) 208Pb
β (3%) 212Po
212m2Bi 1479(30) keV 7.0(3) min β 212Po (18−)
213Bi
[n 16][n 17]
83 130 212.994384(5) 45.60(4) min β (97.91%) 213Po 9/2− Trace[n 18]
α (2.09%) 209Tl
213mBi 1353(21) keV >168 s 25/2−#
214Bi Radium C 83 131 213.998711(12) 19.9(4) min β (99.98%) 214Po 1− Trace[n 13]
α (0.021%) 210Tl
β, α (0.003%) 210Pb
214mBi 539(30) keV >93 s 8−#
215Bi 83 132 215.001749(6) 7.62(13) min β 215Po (9/2−) Trace[n 14]
215mBi 1367(20)# keV 36.9(6) s IT (76.9%) 215Bi (25/2−)
β (23.1%) 215Po
216Bi 83 133 216.006306(12) 2.21(4) min β 216Po (6−, 7−)
216mBi[n 9] 24(19) keV 6.6(21) min β 216Po 3−#
217Bi 83 134 217.009372(19) 98.5(13) s β 217Po 9/2−#
217mBi 1491(20) keV 3.0(2) μs IT 217Bi 25/2−#
218Bi 83 135 218.014188(29) 33(1) s β 218Po 8−#
219Bi 83 136 219.01752(22)# 8.7(29) s β 219Po 9/2−#
220Bi 83 137 220.02250(32)# 9.5(57) s β 220Po 1−#
221Bi 83 138 221.02598(32)# 2# s
[>300 ns]
9/2−#
222Bi 83 139 222.03108(32)# 3# s
[>300 ns]
1−#
223Bi 83 140 223.03461(43)# 1# s
[>300 ns]
9/2−#
224Bi 83 141 224.03980(43)# 1# s
[>300 ns]
1−#
This table header & footer:
  1. ^ mBi – Excited nuclear isomer.
  2. ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. ^ Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ Modes of decay:
    EC: Electron capture
    IT: Isomeric transition


    p: Proton emission
  6. ^ Bold symbol as daughter – Daughter product is stable.
  7. ^ ( ) spin value – Indicates spin with weak assignment arguments.
  8. ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  9. ^ a b c d Order of ground state and isomer is uncertain.
  10. ^ Formerly believed to be final decay product of 4n+1 decay chain
  11. ^ Primordial radioisotope, also some is radiogenic from the extinct nuclide 237Np
  12. ^ Formerly believed to be the heaviest stable nuclide
  13. ^ a b Intermediate decay product of 238U
  14. ^ a b Intermediate decay product of 235U
  15. ^ Intermediate decay product of 232Th
  16. ^ Used in medicine such as for cancer treatment.
  17. ^ A byproduct of thorium reactors via 233U.
  18. ^ Intermediate decay product of 237Np

Bismuth-213

[edit]

Bismuth-213 (213Bi) has a half-life of 45 minutes and decays via alpha emission. Commercially, bismuth-213 can be produced by bombarding radium with bremsstrahlung photons from a linear particle accelerator, which populates its progenitor actinium-225. In 1997, an antibody conjugate with 213Bi was used to treat patients with leukemia. This isotope has also been tried in targeted alpha therapy (TAT) program to treat a variety of cancers.[7] Bismuth-213 is also found in the decay chain of uranium-233, which is the fuel bred by thorium reactors.

References

[edit]
  1. ^ a b c d Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. ^ "Standard Atomic Weights: Bismuth". CIAAW. 2005.
  3. ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  5. ^ Andreyev, A. N.; Ackermann, D.; Heßberger, F. P.; Hofmann, S.; Huyse, M.; Kojouharov, I.; Kindler, B.; Lommel, B.; Münzenberg, G.; Page, R. D.; Vel, K. Van de; Duppen, P. Van; Heyde, K. (1 October 2003). "α-decay spectroscopy of light odd-odd Bi isotopes - II: 186Bi and the new nuclide 184Bi" (PDF). The European Physical Journal A. 18 (1): 55–64. Bibcode:2003EPJA...18...55A. doi:10.1140/epja/i2003-10051-1. ISSN 1434-601X. S2CID 122369569. Retrieved 20 June 2023.
  6. ^ Doherty, D. T.; Andreyev, A. N.; Seweryniak, D.; Woods, P. J.; Carpenter, M. P.; Auranen, K.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Canete, L.; Cubiss, J. G.; Harker, J.; Haylett, T.; Huang, T.; Janssens, R. V. F.; Jenkins, D. G.; Kondev, F. G.; Lauritsen, T.; Lederer-Woods, C.; Li, J.; Müller-Gatermann, C.; Potterveld, D.; Reviol, W.; Savard, G.; Stolze, S.; Zhu, S. (12 November 2021). "Solving the Puzzles of the Decay of the Heaviest Known Proton-Emitting Nucleus 185Bi". Physical Review Letters. 127 (20): 202501. Bibcode:2021PhRvL.127t2501D. doi:10.1103/PhysRevLett.127.202501. hdl:20.500.11820/ac1e5604-7bba-4a25-a538-795ca4bdc875. ISSN 0031-9007. PMID 34860042. S2CID 244089059. Retrieved 20 June 2023.
  7. ^ Imam, S (2001). "Advancements in cancer therapy with alpha-emitters: a review". International Journal of Radiation Oncology, Biology, Physics. 51 (1): 271–278. doi:10.1016/S0360-3016(01)01585-1. PMID 11516878.