Analgesic: Difference between revisions
Line 7: | Line 7: | ||
In choosing analgesics, the severity and response to other medication determines the choice of agent; the WHO [[pain ladder]], originally developed in [[cancer]]-related pain, is widely applied to find suitable drugs in a stepwise manner.<ref>{{cite book |last=Anonymous |title=Cancer pain relief and palliative care; report of a WHO expert committee |series=World Health Organization Technical Report Series, 804 |year=1990 |publisher=World Health Organization |location=Geneva, Switzerland |isbn=92-4-120804-X |pages=1–75}}</ref> The analgesic choice is also determined by the type of pain: for [[neuropathic pain]], traditional analgesics are less effective, and there is often benefit from classes of drugs that are not normally considered analgesics, such as [[tricyclic antidepressants]] and [[anticonvulsant]]s.<ref name="pmid14623723">{{cite journal |author=Dworkin RH, Backonja M, Rowbotham MC, ''et al.'' |title=Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations |journal=Arch. Neurol. |volume=60 |issue=11 |pages=1524–34 |year=2003 |pmid=14623723 |doi=10.1001/archneur.60.11.1524|url=http://archneur.ama-assn.org/cgi/content/full/60/11/1524}}</ref> |
In choosing analgesics, the severity and response to other medication determines the choice of agent; the WHO [[pain ladder]], originally developed in [[cancer]]-related pain, is widely applied to find suitable drugs in a stepwise manner.<ref>{{cite book |last=Anonymous |title=Cancer pain relief and palliative care; report of a WHO expert committee |series=World Health Organization Technical Report Series, 804 |year=1990 |publisher=World Health Organization |location=Geneva, Switzerland |isbn=92-4-120804-X |pages=1–75}}</ref> The analgesic choice is also determined by the type of pain: for [[neuropathic pain]], traditional analgesics are less effective, and there is often benefit from classes of drugs that are not normally considered analgesics, such as [[tricyclic antidepressants]] and [[anticonvulsant]]s.<ref name="pmid14623723">{{cite journal |author=Dworkin RH, Backonja M, Rowbotham MC, ''et al.'' |title=Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations |journal=Arch. Neurol. |volume=60 |issue=11 |pages=1524–34 |year=2003 |pmid=14623723 |doi=10.1001/archneur.60.11.1524|url=http://archneur.ama-assn.org/cgi/content/full/60/11/1524}}</ref> |
||
pka |
|||
==The major classes== |
|||
===Paracetamol and NSAIDs=== |
|||
{{Main|Non-steroidal anti-inflammatory drug}} |
|||
F kyle |
|||
The exact mechanism of action of [[paracetamol|paracetamol/acetaminophen]] is uncertain, but it appears to be acting centrally rather than peripherally (in the brain rather than in nerve endings). [[Aspirin]] and the other [[non-steroidal anti-inflammatory drug]]s (NSAIDs) inhibit [[cyclooxygenase]]s, leading to a decrease in [[prostaglandin]] production. This reduces pain and also [[inflammation]] (in contrast to paracetamol and the opioids).{{Citation needed|date=February 2007}} |
|||
Paracetamol has few side effects and is regarded as safe, although intake above the recommended dose can lead to [[paracetamol toxicity|liver damage]], which can be severe and life-threatening, and occasionally [[analgesic nephropathy|kidney damage]]. NSAIDs predispose to [[peptic ulcer]]s, [[renal failure]], [[allergy|allergic reactions]], and occasionally [[hearing loss]], and they can increase the risk of [[hemorrhage]] by affecting [[platelet]] function. The use of aspirin in children under 16 suffering from viral illness has been linked to [[Reye's syndrome]], a rare but severe liver disorder. |
|||
===COX-2 inhibitors=== |
|||
{{Main|COX-2 inhibitor}} |
|||
These drugs have been derived from NSAIDs. The [[cyclooxygenase]] enzyme inhibited by NSAIDs was discovered to have at least 2 different versions: COX1 and COX2. Research suggested that most of the adverse effects of NSAIDs were mediated by blocking the COX1 (constitutive) enzyme, with the analgesic effects being mediated by the COX2 (inducible) enzyme. The COX2 inhibitors were thus developed to inhibit only the COX2 enzyme (traditional NSAIDs block both versions in general). These drugs (such as [[rofecoxib]] and [[celecoxib]]) are equally effective analgesics when compared with NSAIDs, but cause less gastrointestinal hemorrhage in particular. However, post-launch data indicated increased risk of cardiac and cerebrovascular events with these drugs; this is probably due to an imbalance in blood coagulation. Rofecoxib (marketed as Vioxx) was subsequently withdrawn from the market. The role for the remaining members of this class of drug is debated. |
|||
The introduction of the new IV pain medication, Ofirmev (IV acetaminophen) has been shown to improve pain relief and reduce opioid consumption in the perioperative setting. Ofirmev does not carry black box warnings for increased bleed risk and renal toxicity, which are warnings for some of the commonly prescribed NSAIDs. IV acetaminophen is the most widely used IV analgesic in hospitals throughout Europe, where it has been commercially available since 2002. The use of IV acetaminophen for surgical patients is quickly becoming a standard of care in the United States. |
|||
===Opiates and morphinomimetics=== |
|||
{{Main|Opioid|Opiate}} |
|||
[[Morphine]], the [[archetypal]] [[opioid]], and various other substances (e.g. [[codeine]], [[oxycodone]], [[hydrocodone]], [[dihydromorphine]], [[pethidine]]) all exert a similar influence on the [[Cerebrum|cerebral]] [[opioid receptor]] system. [[Buprenorphine]] is thought to be a [[partial agonist]] of the opioid receptor, and [[tramadol]] is an opiate agonist with SNRI properties.{{Citation needed|reason=tramadol|date=February 2009}} [[Tramadol]] is structurally closer to [[venlafaxine]] than to [[codeine]] and delivers analgesia by not only delivering "opiate-like" effects (through mild agonism of the [[mu receptor]]) but also by acting as a weak but fast-acting [[serotonin releasing agent]] and [[norepinephrine reuptake inhibitor]].<ref name="pmid1596676">{{cite journal | author = Driessen B, Reimann W | title = Interaction of the central analgesic, tramadol, with the uptake and release of 5-hydroxytryptamine in the rat brain in vitro | journal = British Journal of Pharmacology | volume = 105 | issue = 1 | pages = 147–51 | year = 1992 | month = January | pmid = 1596676 | pmc = 1908625 | doi = | url = }}</ref><ref name="pmid9389855">{{cite journal | author = Bamigbade TA, Davidson C, Langford RM, Stamford JA | title = Actions of tramadol, its enantiomers and principal metabolite, O-desmethyltramadol, on serotonin (5-HT) efflux and uptake in the rat dorsal raphe nucleus | journal = British Journal of Anaesthesia | volume = 79 | issue = 3 | pages = 352–6 | year = 1997 | month = September | pmid = 9389855 | doi = | url = http://bja.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=9389855}}</ref><ref name="pmid9671098">{{cite journal |author=Reimann W, Schneider F |title=Induction of 5-hydroxytryptamine release by tramadol, fenfluramine and reserpine |journal=European Journal of Pharmacology |volume=349 |issue=2–3 |pages=199–203 |year=1998 |month=May |pmid=9671098 |doi=10.1016/S0014-2999(98)00195-2}}</ref><ref name="pmid12354291">{{cite journal |author=Gobbi M, Moia M, Pirona L, ''et al.'' |title=p-Methylthioamphetamine and 1-(m-chlorophenyl)piperazine, two non-neurotoxic 5-HT releasers in vivo, differ from neurotoxic amphetamine derivatives in their mode of action at 5-HT nerve endings in vitro |journal=Journal of Neurochemistry |volume=82 |issue=6 |pages=1435–43 |year=2002 |month=September |pmid=12354291 |doi=10.1046/j.1471-4159.2002.01073.x}}</ref> Dosing of all opioids may be limited by opioid toxicity (confusion, respiratory depression, [[myoclonus|myoclonic jerks]] and pinpoint pupils), seizures ([[tramadol]]), but there is no dose ceiling in patients who accumulate tolerance. {{Citation needed|date=April 2010}} |
|||
Opioids, while very effective analgesics, may have some unpleasant side-effects. Patients starting morphine may experience [[nausea]] and [[vomiting]] (generally relieved by a short course of [[antiemetic]]s such as [[phenergan]]). [[Pruritus]] (itching) may require switching to a different opioid. [[Constipation]] occurs in almost all patients on opioids, and [[laxative]]s ([[lactulose]], [[macrogol]]-containing or co-danthramer) are typically co-prescribed.<ref name="oxford">Oxford Textbook of Palliative Medicine, 3rd ed. (Doyle D, Hanks G, Cherney I and Calman K, eds. Oxford University Press, 2004).</ref> |
|||
When used appropriately, opioids and similar [[narcotic]] analgesics are otherwise safe and effective, however risks such as addiction and the body becoming used to the drug (tolerance) can occur. The effect of tolerance means that frequent use of the drug may result in its diminished effect so, when safe to do so, the dosage may need to be increased to maintain effectiveness. This may be of particular concern regarding patients suffering with chronic pain.{{Citation needed|date=April 2010}} |
|||
===Flupirtine=== |
|||
[[Flupirtine]] is a centrally acting K+ channel opener with weak NMDA antagonist properties.<ref>Kornhuber J, Bleich S, Wiltfang J, Maler M, Parsons CG. "Flupirtine shows functional NMDA receptor antagonism by enhancing Mg2+ block via activation of voltage independent potassium channels". J.Neural Transm. 106:857-867, 1999. PMID 10599868</ref> It is used in Europe for moderate to strong pain and migraine and its muscle relaxant properties. It has no anticholinergic properties and is believed be devoid of any activity on dopamine, serotonin or histamine receptors. It is not addictive and tolerance usually does not develop.<ref>{{Cite journal|last1=Klawe|first1=C|last2=Maschke|first2=M|title=Flupirtine: pharmacology and clinical applications of a nonopioid analgesic and potentially neuroprotective compound|journal=Expert opinion on pharmacotherapy|volume=10|issue=9|pages=1495–500|year=2009|pmid=19505216|doi=10.1517/14656560902988528}}</ref> However, tolerance may develop in single cases.<ref>Stoessel C, Heberlein A, Hillemacher T, Bleich S, Kornhuber J. "Positive reinforcing effects of flupirtine --- two case reports". Prog.Neuropsychopharmacol.Biol.Psychiatry 34:1120-1121, 2010. PMID 20362025</ref> |
|||
===Specific agents=== |
|||
In patients with chronic or neuropathic pain, various other substances may have analgesic properties. [[Tricyclic antidepressant]]s, especially [[amitriptyline]], have been shown to improve pain in what appears to be a central manner.{{Citation needed|date=April 2010}} Nefopam is used in Europe for pain relief with concurrent opioids. The exact mechanism of [[carbamazepine]], [[gabapentin]] and [[pregabalin]] is similarly unclear, but these [[anticonvulsant]]s are used to treat neuropathic pain with differing degrees of success. Anticonvulsants are most commonly used for neuropathic pain as their mechanism of action tends to inhibit pain sensation.{{Citation needed|date=April 2010}} |
|||
==Specific forms and uses== |
==Specific forms and uses== |
Revision as of 00:23, 15 June 2012
This article needs additional citations for verification. (December 2009) |
An analgesic (also known as a painkiller) is any member of the group of drugs used to relieve pain (achieve analgesia). The word analgesic derives from Greek an- ("without") and algos ("pain").
Analgesic drugs act in various ways on the peripheral and central nervous systems; they include paracetamol (para-acetylaminophenol, also known in the US as acetaminophen), the non-steroidal anti-inflammatory drugs (NSAIDs) such as the salicylates, and opioid drugs such as morphine and opium. They are distinct from anesthetics, which reversibly eliminate sensation.
In choosing analgesics, the severity and response to other medication determines the choice of agent; the WHO pain ladder, originally developed in cancer-related pain, is widely applied to find suitable drugs in a stepwise manner.[1] The analgesic choice is also determined by the type of pain: for neuropathic pain, traditional analgesics are less effective, and there is often benefit from classes of drugs that are not normally considered analgesics, such as tricyclic antidepressants and anticonvulsants.[2]
pka
F kyle
Specific forms and uses
Combinations
Analgesics are frequently used in combination, such as the paracetamol and codeine preparations found in many non-prescription pain relievers. They can also be found in combination with vasoconstrictor drugs such as pseudoephedrine for sinus-related preparations, or with antihistamine drugs for allergy sufferers.
While the use of paracetamol, aspirin, ibuprofen, naproxen and other NSAIDS concurrently with weak to mid-range opiates (up to about the hydrocodone level) has been said to show beneficial synergistic effects by combatting pain at multiple sites of action,[3] several combination analgesic products have been shown to have few efficacy benefits when compared to similar doses of their individual components. Moreover, these combination analgesics can often result in significant adverse events, including accidental overdoses, most often due to confusion which arises from the multiple (and often non-acting) components of these combinations.[4]
Topical or systemic
Topical analgesia is generally recommended to avoid systemic side-effects. Painful joints, for example, may be treated with an ibuprofen- or diclofenac-containing gel; capsaicin also is used topically. Lidocaine, an anesthetic, and steroids may be injected into painful joints for longer-term pain relief. Lidocaine is also used for painful mouth sores and to numb areas for dental work and minor medical procedures.
Psychotropic agents
Tetrahydrocannabinol (THC) and some other cannabinoids, either from the Cannabis sativa plant or synthetic, have analgesic properties, although the use of cannabis derivatives is currently illegal in many countries. A recent study finds that inhaled cannabis is effective in alleviating neuropathy and pain resulting from e.g. spinal injury and multiple sclerosis.[5] Other psychotropic analgesic agents include ketamine (an NMDA receptor antagonist), clonidine and other α2-adrenoreceptor agonists, and mexiletine and other local anaesthetic analogues.
Atypical, adjuvant analgesics & potentiators
Drugs which have been introduced for uses other than analgesics are also used in pain management. Both first-generation (such as amitriptyline) and newer anti-depressants (such as duloxetine) are used alongside NSAIDs and opioids for pain involving nerve damage and similar problems. Other agents directly potentiate the effects of analgesics, such as using hydroxyzine, promethazine, carisoprodol or tripelennamine to increase the pain-killing ability of a given dose of opioid analgesic.
Adjuvant analgesics, also called atypical analgesics, include nefopam, orphenadrine, pregabalin, gabapentin, cyclobenzaprine, scopolamine, and other drugs possessing anticonvulsant, anticholinergic and/or antispasmodic properties, as well as many other drugs with CNS actions. These drugs are used along with analgesics to modulate and/or modify the action of opioids when used against pain, especially of neuropathic origin.
Dextromethorphan has been noted to slow the development of tolerance to opioids and exert additional analgesia by acting upon the NMDA receptors; some analgesics such as methadone and ketobemidone and perhaps piritramide have intrinsic NMDA action.
High-alcohol liquor, two forms of which were in the US Pharmacopoeia up until 1916 and in common use by physicians well into the 1930s, has been used in the past as an agent for dulling pain, due to the CNS depressant effects of ethyl alcohol, a notable example being the American Civil War. However, the ability of alcohol to relieve severe pain is likely inferior to many analgesics used today (e.g. morphine, codeine). As such, the idea of alcohol for analgesia is generally considered a primitive practice in virtually all industrialized countries today.
The use of adjuvant analgesics is an important and growing part of the pain-control field and new discoveries are made practically every year. Many of these drugs combat the side effects of opioid analgesics, an added bonus. For example, antihistamines including orphenadrine combat the release of histamine caused by many opioids. Stimulants such as methylphenidate, caffeine, ephedrine, dextroamphetamine, and cocaine work against heavy sedation and may elevate mood in distressed patients as do the antidepressants. The use of medicinal cannabis remains a debated issue.
See also
References
- ^ Anonymous (1990). Cancer pain relief and palliative care; report of a WHO expert committee. World Health Organization Technical Report Series, 804. Geneva, Switzerland: World Health Organization. pp. 1–75. ISBN 92-4-120804-X.
- ^ Dworkin RH, Backonja M, Rowbotham MC; et al. (2003). "Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations". Arch. Neurol. 60 (11): 1524–34. doi:10.1001/archneur.60.11.1524. PMID 14623723.
{{cite journal}}
: Explicit use of et al. in:|author=
(help)CS1 maint: multiple names: authors list (link) - ^ Mehlisch DR (2002). "The efficacy of combination analgesic therapy in relieving dental pain". J Am Dent Assoc. 133 (7): 861–71. PMID 12148679.
- ^ Murnion B. "Combination analgesics in adults". Australian Prescriber (33): 113–5. Retrieved 12 August 2010.
- ^ CMCR: CMCR Report February 17th, California, 2010. http://www.cmcr.ucsd.edu/CMCR_REPORT_FEB17.pdf