Jump to content

Alexander Graham Bell: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
m punctuation
Rm411 (talk | contribs)
No edit summary
Line 1: Line 1:
{{pp-semi-protected|small=yes}}
{{pp-semi-protected|small=yes}}
<!-- This article is a part of [[Wikipedia:WikiProject Aircraft]]. Please see [[Wikipedia:WikiProject Aircraft/page content]] for recommended layout. -->{{Infobox Person
<!-- This article is a part of [[Wikipedia:WikiProject Aircraft]]. Please see [[Wikipedia:WikiProject Aircraft/page content]] for recommended layout. -->{{Infobox Person
| name = Alexander Graham Bell
| name = Furry
| image = Alexander Graham Bell.jpg
| image = Alexander Graham Bell.jpg
| image_size = 225px
| image_size = 225px

Revision as of 18:11, 3 March 2008

Furry
Portrait of Alexander Graham Bell c. 1910
Born3 March 1847
Died2 August 1922(1922-08-02) (aged 75)
Cause of deathPernicious anemia
EducationUniversity of Edinburgh
University of Toronto
Occupation(s)Inventor, Scientist
Known forInventor of the telephone
Spouse(s)Mabel Hubbard
(married 1877–1922)
Children(4) Two sons who died in infancy and two daughters
Parent(s)Alexander Melville Bell
Eliza Grace Symonds Bell
RelativesGardiner Greene Hubbard (father-in-law)
Gilbert Hovey Grosvenor (son-in-law)
Melville Bell Grosvenor (grandson)

Alexander Graham Bell (3 March 18472 August 1922) was an eminent scientist, inventor and innovator. Most often associated with the invention of the telephone, Bell was also called "the father of the deaf".[1] His father, grandfather and brother had all been associated with work on elocution and speech, and both his mother and wife were deaf, profoundly influencing Bell's life's work.[2] His research on hearing and speech further led him to experiment with hearing devices that eventually culminated in Bell being awarded the first U.S. patent for the invention of the telephone in 1876.[3]

Many other inventions marked Bell's later life including groundbreaking work in hydrofoils and aeronautics. In 1888, Alexander Graham Bell was one of the founding members of the National Geographic Society.[4] In reflection, Bell considered his most famous invention an intrusion on his real work as a scientist and refused to have a telephone in his study.[5] Upon Bell's death, all telephones throughout the United States "stilled their ringing for a silent minute in tribute to the man whose yearning to communicate made them possible."[6]

Early years

Alexander Bell was born in Edinburgh, Scotland on 3 March 1847.[7] Throughout his early life, Bell was a British subject. The family home was at 16 South Charlotte Street, Edinburgh and has a commemorative marker at the doorstep, marking this as Alexander Graham Bell's birthplace. He had two brothers: Melville James Bell (1845–1870) and Edward Charles Bell (1848–1867). Both of his brothers died of tuberculosis, Edward in 1867 and Melville in 1870.[8] His father was Professor Alexander Melville Bell, and his mother was Eliza Grace (nee Symonds).[9] Although he was born "Alexander", at age ten he made a plea to his father to have a middle name like his two brothers.[10] For his 11th birthday, his father acquiesced and allowed him to adopt the middle name "Graham" chosen out of admiration for Alexander Graham, a Canadian being treated by his father and boarder who had become a family friend.[11] To close relatives and friends he remained "Aleck" which his father continued to call him into later life.[12]

First invention

As a child, young Aleck Bell displayed a natural curiosity about his world, resulting in gathering botanical specimens as well as experimenting even at an early age. His best friend was Ben Herdman, a neighbour whose family operated a flour mill, the scene of many forays. When their typical child's play had caused a racket one day, John Herdman admonished the two boys, "Why don't you do something useful?" Young Aleck asked what needed to be done at the mill. He was told wheat had to be dehusked through a laborious process and at the age of 12, Bell built a homemade device that combined rotating paddles with sets of nail brushes, creating a simple dehusking machine that was put into operation and used steadily for a number of years.[13] In return, John Herdman gave both boys the run of a small workshop to "invent."[13]

Early work with speech

From his early years, Bell showed a sensitive nature and a talent for art, poetry and music that was encouraged by his mother. With no formal training, he mastered the piano and became the family's pianist.[14] Despite being normally quiet and introspective, he revelled in mimicry and "voice tricks" akin to ventriloquism that constantly entertained family guests.[14] Bell was also deeply affected by his mother's gradual deafness (she began to lose her hearing when he was 12) and learned a manual finger language so he could sit at her side and tap out silently the conversations swirling around the family parlour.[15] He also developed a technique of speaking in clear, modulated tones directly into his mother's forehead wherein she would hear him with reasonable clarity.[16] Bell's preoccupation with his mother's deafness led him to study acoustics.

His family was associated with the teaching of elocution: his grandfather, Alexander Bell, in London, his uncle in Dublin, and his father, in Edinburgh, were all elocutionists. His father published a variety of works on the subject, several of which are still well known, especially his The Standard Elocutionist (1860)[14][17] and treatise on Visible Speech, which appeared in Edinburgh in 1868. The Standard Elocutionist appeared in 168 British editions and sold over a quarter of a million copies in the United States alone. In this treatise, he explains his methods of how to instruct deaf-mutes (as they were then known) to articulate words and read other people's lip movements to decipher meaning. Aleck's father taught him and his brothers not only to write Visible Speech but also to identify any symbol and its accompanying sound.[18] Aleck became so proficient that he became part of his father's public demonstrations and astounded audiences with his abilities in deciphering Latin, Gaelic and even Sanskrit symbols.[18]

Education

Although as a young child, like his brothers, Bell received his early schooling at home from his father, at an early age, he was enrolled at the Royal High School, Edinburgh, Scotland, which he left at age 15, completing the first four forms only.[19] His school record was undistinguished, marked by absenteeism and lacklustre grades. His main interest remained in the sciences, especially biology with other school subjects treated with indifference, to the dismay of his demanding father.[20] Upon leaving school, Bell went to London to live with his grandfather, Alexander Bell. During the year he spent with his grandfather, a love of learning was born, with long hours spent in serious discussion and study. The elder Bell took great efforts to have his young pupil learn to speak clearly and with conviction, the attributes that his pupil would need to become a teacher himself.[21] At age 16, Bell secured a position as a "pupil-teacher" of elocution and music, in Weston House Academy, at Elgin, Moray, Scotland. Although he was enrolled as a student in Latin and Greek, he instructed in return for board and £10 per session.[22] The following year he attended the University of Edinburgh; joining his older brother Melville who had enrolled there the previous year, and where Aleck intended to write exams but later graduated from the University of Toronto.

First experiments with sound

Bell's father encouraged Aleck's interest in speech and in 1863, took his sons to see a unique automaton, developed by Sir Charles Wheatstone based on the earlier work of Baron Wolfgang von Kempelen.[23] The rudimentary "mechanical man" simulated a human voice. Aleck was fascinated by the machine and after he obtained a copy of von Kempelen's book published in Germany and had laboriously translated it, Aleck and his older brother Melville built their own automaton head. Their father, highly interested in their project, offered to pay for any supplies and spurred the boys on with the enticement of a "big prize" if they were successful.[23] While his brother constructed the throat and larynx, Aleck tackled the more difficult task of recreating a realistic skull. His efforts resulted in a remarkably lifelike head that could "speak," albeit only a few words.[23] The boys would carefully adjust the "lips" and when a bellows forced air through the windpipe, a very recognizable "Mama" ensued, to the delight of neighbors who came to see the Bell invention.[24]

Intrigued by the results of the automaton, Bell continued to experiment with a live subject, the family's Skye terrier, "Trouve".[25] After he taught it to growl continuously, Aleck would reach into its mouth and manipulate the dog's lips and vocal cords to produce a crude-sounding "Ow ah oo ga ma ma." With little convincing, visitors believed his dog could articulate "How are you grandma?" More indicative of his playful nature, his experiments convinced onlookers that they saw a "talking dog."[26] However, these initial forays into experimentation with sound led Bell to undertake his first serious work on the transmission of sound, using tuning forks to explore resonance. At the age of 19, he wrote a report on his work and sent it to Alexander Ellis, a colleague of his father.[26] Ellis immediately wrote back indicating that the experiments were similar to existing work in Germany. Dismayed to find that groundbreaking work had already taken place by Hermann von Helmholtz who had conveyed vowel sounds by means of a similar tuning fork "contraption", he pored over the German scientist's book, Sensations of Tone. From his translation of the original German edition, Aleck then made a deduction that would be the underpinning of all his future work on transmitting sound, "Without knowing much about the subject, it seemed to me that if vowel sounds could be produced by electrical means so could consonants, so could articulate speech."[27]

Family tragedy

In 1865, when the Bell family moved to London,[28] Bell returned to Weston House as an assistant master and in his spare hours, continued experiments on sound using a minimum of laboratory equipment. Bell concentrated on experimenting with electricity to convey sound and later installed a telegraph wire from his room in Somerset College to that of a friend.[29] Throughout the fall and winter, his health faltered mainly through exhaustion. His younger brother, Edward "Ted" was similarly bed-ridden, suffering from tuberculosis. While Bell recovered (now referring to himself in correspondence as "A.G. Bell") and served the next year as an instructor at Somerset College, Bath, Somerset, England, his brother's condition deteriorated. Edward would never recover. Upon his brother's passing, Bell returned home in 1867. His older brother, "Melly" had married and moved out. With aspirations to obtain a degree at the University of London, Bell considered his next years as preparation for the degree examinations, devoting his spare time at his family's residence to studying.

Helping his father in Visible Speech demonstrations and lectures brought Bell to Susanna E. Hull's private school for the deaf in South Kensington, London. His first two pupils were "deaf mute" girls who made remarkable progress under his tutelage. While his older brother seemed to achieve success on many fronts including setting up his own school for elocution, applying for a patent on an invention, and beginning a family, Bell continued as a teacher. In May 1870, Melville died from complications of tuberculosis, causing a family crisis. His father had also suffered a debilitating illness earlier in life and had been restored to health by a convalescence in Newfoundland. Bell's parents precipitated a long-planned move when they realized that their remaining son was also sickly. Making a swift judgement, Alexander Melville Bell asked Bell to arrange for the sale of all the family property,[30] conclude all of his brother's affairs (Bell took over a last student, curing a pronounced lisp)[31] and join his father and mother in setting out for the "New World."[32] Reluctantly, Bell also had to conclude a relationship with Marie Eccleston, whom he surmised was not prepared to leave England with him.[33]

Canada

In 1870, at age 23, Bell, his brother's widow, Caroline (Margaret Ottaway),[34] and his parents travelled on the SS Nestorian to Canada.[35] After landing at Quebec City, the Bells boarded a train to Montreal and later to Paris, Ontario to stay with the Reverend Thomas Henderson, a family friend. After a brief stay with the Hendersons, the Bell family purchased a ten and a half acre farm at Tutelo Heights (now called Tutela Heights), near Brantford, Ontario. The property consisted of an orchard, larger farm house, stable, pigsty, hen-house and carriage house, bordering the Grand River.[36]

At the homestead, Bell set up his own workshop in the converted carriage house[37] near to what he called his "dreaming place," a large hollow nestled in trees at the back of the property above the river.[38] Despite his frail condition upon arriving in Canada, Bell found the climate and environs to his liking, and rapidly improved.[39] He continued his interest in the study of the human voice and when he discovered the Six Nations Reserve across the river at Onondaga, he learned the Mohawk language and translated its unwritten vocabulary into Visible Speech symbols. For his work, Bell was awarded the title of honorary chief and participated in a ceremony where he donned a Mohawk headdress and danced traditional dances.[40]

After setting up his workshop, Bell continued experiments based on Helmholtz's work with electricity and sound.[37] He designed a piano which, by means of electricity, could transmit its music at a distance. Once the family was settled in, both Bell and his father made plans to establish a teaching practice and in 1871, he accompanied his father to Montreal, where Melville was offered a position to teach his System of Visible Speech.

Work with the deaf

Subsequently, his father was invited by Sarah Fuller, principal of the Boston School for Deaf Mutes (which continues today as the Horace Mann School for the Deaf and Hard of Hearing),[41] in Boston, Massachusetts, United States, to introduce the Visible Speech System by providing training for Fuller's instructors but he declined the post, in favor of his son. Travelling to Boston in April 1871, Bell provided a successful inservicing of the school's instructors.[42] He was subsequently asked to repeat the program at the American Asylum for Deaf-mutes in Hartford and the Clarke School for the Deaf in Northampton.

Returning home to Brantford after six months abroad, Bell continued his experiments with his "harmonic telegraph."[43]The basic concept behind his device was that messages could be sent through one wire if each message was transmitted at a different pitch but work on both the transmitter and receiver were needed.[44] Unsure of his future, he first contemplated returning to London to complete his studies but decided to return to Boston as a teacher.[45] His father helped him set up his private practise by contacting Gardiner Greene Hubbard, the president of the Clarke School for the Deaf for a recommendation. Teaching his father's system, in October 1872, Alexander Bell opened a school in Boston named the "Vocal Physiology and Mechanics of Speech" which attracted a large number of deaf pupils.[46] His first class numbered 30 students.[47] Working as a private tutor, one of his most famous pupils was Helen Keller, who came to him as a young child, unable to see, hear or speak. She later was to say that Bell dedicated his life to the penetration of that "inhuman silence which separates and estranges."[48]

Continuing experimentation

In the following year, Bell became professor of Vocal Physiology and Elocution at the Boston University School of Oratory. During this period, he alternated between Boston and Brantford, spending summers in his Canadian home. At Boston University, Bell was "swept up" by the excitement engendered by the many scientists and inventors resident in the city. He continued his research in sound and endeavoured to find a way to transmit musical notes and articulate speech, but although absorbed by his experiments, he found it difficult to devote enough time to experimentation. While days and evenings were occupied by his teaching and private classes, Bell began to stay awake late into the night, running experiment after experiment in rented facilities at his boarding house. Keeping up "night owl" hours, he worried that his work would be discovered and took great pains to lock up his notebooks and laboratory equipment. Bell had a specially made table where he could place his notes and equipment inside a locking cover.[49] Worse still, his health deteriorated as he suffered severe headaches.[44] Returning to Boston in fall 1873, Bell made a fateful decision to concentrate on his experiments in sound.

Bell speaking into prototype model of the telephone

Deciding to give up his lucrative private Boston practise, Bell only retained two students, six-year old "Georgie" Sanders, deaf from birth and 15-year old Mabel Hubbard. Each pupil would serve to play an important role in the next developments. George's father, Thomas Sanders, a wealthy businessman, offered Bell a place to stay at nearby Salem with Georgie's grandmother, complete with a room to "experiment." Although the offer was made by George's mother and followed the year-long arrangement in 1872 where her son and his nurse had moved to quarters next to Bell's boarding house, it was clear that Mr. Sanders was backing the proposal. The arrangement was for teacher and student to continue their work together with free room and board thrown in.[50] Mabel was a bright, attractive girl who was ten years his junior but became the object of Bell's affection. Losing her hearing after a bout of scarlet fever at age five, she had learned to read lips but her father, Gardiner Greene Hubbard, Bell's benefactor and personal friend, wanted her to work directly with her teacher.[51]

Telephone

By 1874, Bell's initial work on the harmonic telegraph had entered a formative stage with progress made both at his new Boston "laboratory" as well as at his family home in Canada.[52] While working that summer in Brantford, Bell experimented with a "phonautograph," a pen-like machine that could draw shapes of sound waves on smoked glass by tracing their vibrations. Bell thought it might be possible to generate undulating electrical currents that corresponded to sound waves.[53] Bell also thought that multiple metal reeds tuned to different frequencies like a harp would be able to convert the undulatory currents back into sound. But he had no working model to demonstrate the feasibility of these ideas.[54]

In 1874, telegraph message traffic was rapidly expanding and in the words of Western Union President William Orton, had become "the nervous system of commerce." Orton had contracted with inventors Thomas Edison and Elisha Gray to find a way to send multiple telegraph messages on each telegraph line to avoid the great cost of constructing new lines.[55] When Bell mentioned to Gardiner Hubbard and Thomas Sanders that he was working on a method of sending multiple tones on a telegraph wire using a multi-reed device, the two wealthy patrons began to financially support Bell's experiments.[56] Patent matters would be handled by Hubbard's patent attorney Anthony Pollok.[57]

In March 1875, Bell and Pollok visited the famous scientist Joseph Henry, who was then director of the Smithsonian Institution, and asked Henry's advice on the electrical multi-reed apparatus that Bell hoped would transmit the human voice by telegraph. Henry replied that Bell had "the germ of a great invention". When Bell said that he did not have the necessary knowledge, Henry replied, "Get it!" That declaration greatly encouraged Bell to keep trying. Bell did not have the equipment needed to continue his experiments, nor the ability to create a working model of his ideas. A chance meeting in 1874 between Bell and Thomas A. Watson, an experienced electrical designer and mechanic at the electrical machine shop of Charles Williams, changed all that.

With financial support from Sanders and Hubbard, Bell was able to hire Thomas Watson as his assistant and Bell and Watson experimented with acoustic telegraphy. On 2 June 1875, Watson accidentally plucked one of the reeds and Bell at the receiving end of the wire, heard the overtones of the reed, overtones that would be necessary for transmitting speech. That demonstrated to Bell that only one reed or armature was needed, not multiple reeds. This led to the "gallows" sound-powered telephone, which was able to transmit indistinct voice-like sounds but not clear speech.

The race to the patent office

Meanwhile, Elisha Gray was also experimenting with acoustic telegraphy and thought of a way to transmit speech using a water transmitter. On 14 February 1876, Gray filed a caveat with the U.S. patent office for a telephone design that used a water transmitter. That same morning, Bell's lawyer filed an application with the patent office for the telephone. There is a debate about who arrived first and Gray later challenged the primacy of Bell's patent.[58]

On 14 February 1876, Bell was in Boston. Hubbard, who was paying for the costs of Bell's patents, told his patent lawyer Anthony Pollok to file Bell's application in the U.S. Patent Office. This was done without Bell's knowledge. Patent Number 174,465 was issued to Bell on 7 March 1876 by the U.S. Patent Office which covered "the method of, and apparatus for, transmitting vocal or other sounds telegraphically… by causing electrical undulations, similar in form to the vibrations of the air accompanying the said vocal or other sound."[59]

Three days after his patent was issued, Bell experimented with a water transmitter, using an acid-water mixture. Vibration of the diaphragm caused a needle to vibrate in the water which varied the electrical resistance in the circuit. When Bell spoke the famous sentence "Mr Watson — Come here — I want to see you" into the liquid transmitter,[60] Watson, listening at the receiving end in an adjoining room, heard the words clearly.[61]

Bell's successful test of Gray's water transmitter design provided a proof of concept experiment that proved to Bell's satisfaction that clear human voice sounds could be electrically transmitted. After that, Bell focused on improving the electromagnetic telephone and he did not use a water transmitter in public demonstrations or in commercial applications.[62]

Later developments

Continuing his experiments in Brantford, Bell brought a working model of his telephone home. On 3 August 1876, from the telegraph office in Mount Pleasant five miles (eight km) away from Brantford, Alexander sent a tentative telegram indicating he was ready. With curious onlookers packed into the office as witnesses, faint voices were heard replying. The following night, he amazed his family and guests when a message was received at the Bell home from Brantford, four miles (six km) distant along an improvised wire strung up along telegraph lines, fences and ending up being laid through a tunnel. This time guests at the household distinctly heard people in Brantford reading and singing. These first long-distance transmissions clearly proved that the telephone could work over long distances.[63]

Bell and his partners, Hubbard and Sanders, offered to sell the patent outright to Western Union for $100,000. The president of Western Union balked, countering that the telephone was nothing but a toy. Two years later, he told colleagues that if he could get the patent for $25 million he would consider it a bargain. By then the Bell company no longer wanted to sell the patent.[64] Bell's investors would become millionaires while he fared well from residuals and at one point, had assets nearly reaching one million dollars.[65]

Bell began a series of public demonstrations and lectures in order to introduce the new invention to the scientific community as well as the general public. His demonstration of an early machine at the 1876 Centenary Exhibition in Philadelphia, the following day, made the telephone the featured headline worldwide.[66] Influential visitors to the exhibition included Emperor Pedro II of Brazil, and later Bell had the opportunity to personally demonstrate the invention to William Thomson, a renowned Scottish scientist and even Queen Victoria who had requested a private audience at Osborne House, her Isle of Wight home; she called the demonstration "most extraordinary." The enthusiasm that surrounded Bell's public displays laid the groundwork for acceptance of the revolutionary device.[67]

The Bell Telephone Company was created in 1877, and by 1886, over 150,000 people in the U.S. owned telephones. Bell company engineers made numerous other improvements to the telephone which developed into one of the most successful products. In 1879, the Bell company acquired Edison's patents for the carbon microphone from Western Union. This made the telephone practical for long distances, unlike Bell's voice-powered transmitter that required users to shout into it to be heard at the receiving telephone, even at short distances. On 25 January 1915, Alexander Graham Bell sent the first transcontinental telephone call, at 15 Day Street in New York City, which was received by Thomas Watson at 333 Grant Avenue in San Francisco. The New York Times reported: "On October 9, 1876, Alexander Graham Bell and Thomas A. Watson talked by telephone to each other over a two-mile wire stretched between Cambridge and Boston. It was the first wire conversation ever held. Yesterday afternoon [on January 25, 1915] the same two men talked by telephone to each other over a 3,400-mile wire between New York and San Francisco. Dr. Bell, the veteran inventor of the telephone, was in New York, and Mr. Watson, his former associate, was on the other side of the continent. They heard each other much more distinctly than they did in their first talk thirty-eight years ago."[68]

Competitors

As is sometimes common in scientific discoveries, simultaneous developments can occur, as evidenced by a number of inventors who were at work on the telephone.[69] Although many of these devices had common features that were incorporated in Bell's machine, none were successful in establishing priority over the original Bell patent.[70] The Bell company lawyers successfully fought off a myriad of lawsuits generated initially around the challenges by Elisha Gray and Amos Dolbear. In personal correspondence to Bell, both Gray and Dolbear had acknowledged his prior work which considerably weakened their later claims.[71] On 13 January 1887, the Government of the United States moved to annul the patent issued to Bell on the grounds of fraud and misrepresentation. The prosecuting attorney was the Hon. George M. Stearns under the direction of the Solicitor General George A. Jenks. The Bell company decisively won the landmark case. Bell's direct and cross-examination testimony alone filled 445 pages but was the key to the decision against the government.[72]

Over a period of 18 years, the Bell Telephone Company faced over 600 litigations from inventors claiming to have invented the telephone, never once losing a case. Bell's laboratory notes and family letters were the key to establishing a long lineage to his experiments.[73] One example of the legal action was by Italian inventor Antonio Meucci who claimed in 1834 to have created the first working model of a telephone in Italy. In 1876, Meucci took Bell to court in order to establish his priority. Meucci lost his case due to lack of material evidence of his inventions. Meucci's work, like many other inventors of the period, was based around earlier acoustic principles.[74] However, due to the efforts of Congressman Vito Fossella, Resolution 269 the U.S. House of Representatives on 11 June 2002 stated that Meucci's "work in the invention of the telephone should be acknowledged," even though this did not put an end to a still contentious issue.[75][76] Overwhelmingly, modern scholars do not recognize the claims of acoustic devices such as Meucci's had any bearing on the development of the telephone.[77]

The value of the Bell patent was acknowledged throughout the world, and when Bell had delayed the German patent application, the electrical firm of Siemens & Halske (S&H) managed to set up a rival manufacturer of Bell telephones under their own patent. The Siemens company produced near-identical copies of the Bell telephone without paying royalties.[78] A series of agreements in other countries eventually consolidated a global telephone operation. The strain on Bell by his constant appearances in court necessitated by the legal battles, eventually resulted in his resignation from the company.[79]

Family life

On 11 July 1877, a few days after the Bell Telephone Company began, Bell married Mabel Hubbard (1857–1923) at the Hubbard estate in Cambridge, and shortly after, embarked on a year-long honeymoon in Europe. During the Bells' European honeymoon, Alec brought a handmade model of his telephone with him, making it a "working holiday." Although the courtship had begun years earlier, Alexander waited until he was financially secure before marrying. Although the telephone appeared to be an "instant" success, it was not initially a profitable venture and Bell's main sources of income were from lectures until after 1897.[80] One unusual request exacted by his fiancée was that he use "Alec" rather than the family's earlier familiar name. From 1876, he would sign his name "Alec Bell."[81][82] They had four children: Elsie May Bell (1878–1964) who married Gilbert Grosvenor of National Geographic fame,[83][84] Marian Hubbard Bell (1880–1962) who was referred to as "Daisy",[85] and two sons who died in infancy.

In 1882, Bell became a naturalized citizen of the United States. The Bell family maintained a residence in Washington, DC, where Alec set up a laboratory. In 1915, he characterized his status as: "I am not one of those hyphenated Americans who claim allegiance to two countries." Despite this declaration, Bell has been claimed as a "native son" by Canada, Scotland and the United States.[86] By 1885, a new summer retreat was contemplated. That summer, the Bells had a vacation on Cape Breton Island in Nova Scotia, spending time at the small village of Baddeck. Returning in 1886, Bell started building an estate on a point across from Baddeck, overlooking Bras d'Or Lake. By 1889, a large house, christened "The Lodge" was completed and two years later, a larger complex of buildings were begun that the Bells would name Beinn Bhreagh(Gaelic: beautiful mountain) after Alec's ancestral Scottish highlands.[87] Bell would spend his final, and some of his most productive years in residence in both Washington, D.C. and Beinn Bhreagh.[88]

Until the end of his life Bell and his family would alternate between the two homes, but Beinn Bhreagh would, over the next 30 years, become more than a summer home as Bell became so absorbed in his experiments that annual stays lengthened. Both Mabel and Alec became immersed in the Baddeck community and were accepted by the villagers as "their own." The Bells were still in residence at Beinn Bhreagh when the Halifax Explosion occurred on 6 December 1917. Mabel and Alec mobilized the community to help victims in Halifax.[89]

Later inventions

Although Alexander Graham Bell is most often associated with the invention of the telephone, his interests were extremely varied. According to his biographer, Charlotte Gray, Bell's work ranged "unfettered across the scientific landscape" and he often went to bed voraciously reading the Encyclopaedia Britannica, scouring it for new areas of interest.[90] The range of Bell's inventive genius is represented only in part by the 18 patents granted in his name alone and the 12 he shared with his collaborators. These included 14 for the telephone and telegraph, four for the photophone, one for the phonograph, five for aerial vehicles, four for "hydroairplanes" and two for selenium cells. Bell's inventions spanned a wide range of interests and included a metal jacket to assist in breathing, the audiometer to detect minor hearing problems, a device to locate icebergs, investigations on how to separate salt from seawater, and work on finding alternative fuels.

Bell worked extensively in medical research and invented techniques for teaching speech to the deaf. During his Volta Laboratory period, Bell and his associates considered impressing a magnetic field on a record as a means of reproducing sound. Although the trio briefly experimented with the concept, they were unable to develop a workable prototype. They abandoned the idea, never realizing they had glimpsed a basic principle which would one day find its application in the tape recorder, the hard disc and floppy disc drive and other magnetic media.

Bell's own home used a primitive form of air conditioning, in which fans blew currents of air across great blocks of ice. He also anticipated modern concerns with fuel shortages and industrial pollution. Methane gas, he reasoned, could be produced from the waste of farms and factories. At his Canadian estate in Nova Scotia, he experimented with composting toilets and devices to capture water from the atmosphere. In a magazine interview published shortly before his death, he reflected on the possibility of using solar panels to heat houses.

Metal detector

Bell is also credited with the invention of the metal detector in 1881. The device was hurriedly put together in an attempt to find the bullet in the body of U.S. President James Garfield. The metal detector worked flawlessly in tests but did not find the assassin's bullet partly because the metal bed frame the President was lying on disturbed the instrument, resulting in static.[91] The president's surgeons, who were sceptical of the device, ignored Bell's requests to move the president to a bed not fitted with metal springs. Alternately, although Bell had detected a slight sound on his first test, the bullet may have lodged too deeply to be detected by the crude apparatus.[91] Bell gave a full account of his experiments in a paper read before the American Association for the Advancement of Science in August 1882.

Hydrofoils

Bell HD-4 on a test run c. 1919

The March 1906 Scientific American article by American hydrofoil pioneer William E. Meacham explained the basic principle of hydrofoils and hydroplanes. Bell considered the invention of the hydroplane as a very significant achievement. Based on information gained from that article he began to sketch concepts of what is now called a hydrofoil boat. Bell and assistant Frederick W. "Casey" Baldwin began hydrofoil experimentation in the summer of 1908 as a possible aid to airplane takeoff from water. Baldwin studied the work of the Italian inventor Enrico Forlanini and began testing models. This led him and Bell to the development of practical hydrofoil watercraft.

During his world tour of 1910–1911, Bell and Baldwin met with Forlanini in France. They had rides in the Forlanini hydrofoil boat over Lake Maggiore. Baldwin described it as being as smooth as flying. On returning to Baddeck, a number of initial concepts were built as experimental models, including the Dhonnas Beag, the first self-propelled Bell-Baldwin hydrofoil.[92] The experimental boats were essentially proof-of-concept prototypes that culminated in the more substantial HD-4, powered by Renault engines. A top speed of 54 miles per hour (87 km/h) was achieved, with the hydrofoil exhibiting rapid acceleration, good stability and steering along with the ability to take waves without difficulty.[93] In 1913, Dr. Bell hired Walter Pinaud, a Sydney yacht designer and builder as well as the proprietor of Pinaud's Yacht Yard in Westmount, Nova Scotia to work on the pontoons of the HD-4. Pinaud soon took over the boatyard at Bell Laboratories on Beinn Bhreagh, Bell's estate near Baddeck, Nova Scotia. Pinaud's experience in boat-building enabled him to make useful design changes to the HD-4. After the First World War, work began again on the HD-4. Bell's report to the U.S. Navy permitted him to obtain two 350 horsepower (260 kW) engines in July 1919. On 9 September 1919, the HD-4 set a world's marine speed record of 70.86 miles per hour (114.04 km/h).[94] This record stood for ten years.

Aeronautics

AEA Silver Dart c.1909

Bell was a supporter of aerospace engineering research through the Aerial Experiment Association (AEA), officially formed at Baddeck, Nova Scotia, in October 1907 at the suggestion of Mrs. Mabel Bell and with her financial support. The AEA was headed by Bell and the founding members were four young men: American Glenn H. Curtiss, a motorcycle manufacturer who later was awarded the Scientific American Trophy for the first official one-kilometre flight in the Western hemisphere and became a world-renowned airplane manufacturer; Frederick W. Baldwin, the first Canadian and first British subject to pilot a public flight in Hammondsport, New York; J.A.D. McCurdy; and Lieutenant Thomas Selfridge, an official observer from the U.S. government. In 1891, Bell began experiments to develop motor-powered heavier-than-air aircraft.

In 1898, Bell experimented with tetrahedral box kites and wings constructed of multiple compound tetrahedral kites covered in silk. The tetrahedral wings were named Cygnet I, II and III, and were flown both unmanned and manned (Cygnet I crashed during a flight carrying Selfridge) in the period from 1907–1912. Some of Bell's kites are on display at the Alexander Graham Bell National Historic Site.

The AEA's work progressed to heavier-than-air machines, applying their knowledge of kites to gliders. Moving to Hammondsport, the group then designed and built the Red Wing, framed in bamboo and covered in red silk and powered by a small air-cooled engine.[95] On 12 March 1908, over Keuka Lake, the biplane lifted off on the first public flight in North America.[96] The innovations that were incorporated into this design included a cockpit enclosure and tail rudder (later variations on the original design would add ailerons as a means of control). One of the AEA project's inventions, the aileron, is a standard component of aircraft today. (The aileron was also invented independently by Robert Esnault-Pelterie.) The White Wing and June Bug were to follow and by the end of 1908, over 150 flights without mishap had been accomplished. However, the AEA had depleted its initial reserves and only a $10,000 grant from Mrs. Bell allowed it to continue with experiments.[97]

Their final aircraft design, the Silver Dart embodied all of the advancements found in the earlier machines. On 23 February 1909, Bell was present as the Silver Dart flown by J.A.D. McCurdy from the frozen ice of Lake Baddeck, made the first aircraft flight in Canada (and the British Empire). Bell had worried that the flight was too dangerous and had arranged for a doctor to be on hand. With the successful flight, the AEA disbanded and the Silver Dart would revert to Baldwin and McCurdy who began the Canadian Aerodrome Company and would later demonstrate the aircraft to the Canadian Army.[98]

Eugenics

Along with many very prominent thinkers and scientists of the time, Bell was connected with the eugenics movement in the United States. In his lecture Memoir upon the formation of a deaf variety of the human race presented to the National Academy of Sciences on 13 November 1883 he noted that congenitally deaf parents were more likely to produce deaf children and tentatively suggested that couples where both parties were deaf should not marry.[99] However, it was his hobby of livestock breeding which led to his appointment to biologist David Starr Jordan's Committee on Eugenics, under the auspices of the American Breeders Association. The committee unequivocally extended the principle to man.[100] From 1912 until 1918 he was the chairman of the board of scientific advisers to the Eugenics Record Office associated with Cold Spring Harbor Laboratory in New York, and regularly attended meetings. In 1921, he was the honorary president of the Second International Congress of Eugenics held under the auspices of the American Museum of Natural History in New York. Organisations such as these advocated passing laws (with success in some states) that established the compulsory sterilization of people deemed to be, as Bell called them, a "defective variety of the human race". By the late 1930s, about half the states in the U.S. had eugenics laws, and the California laws were used as a model for eugenics laws in Nazi Germany.

His ideas about people he considered defective centered on the deaf. This was because of his feelings for his deaf family and his contact with deaf education. In addition to advocating sterilization of the deaf, Bell wished to prohibit deaf teachers from being allowed to teach in schools for the deaf. He worked to outlaw the marriage of deaf individuals to one another, and he was an ardent supporter of oralism over the use of sign language to educate deaf students.[citation needed] His avowed goal was to eradicate the language and culture of the deaf so as to encourage them to assimilate into the hearing culture, for their own long-term benefit and for the benefit of society at large. [citation needed]

Although he supported what some consider harsh and inhumane policies today, he was not unkind to deaf individuals who supported his theories of oralism. He was a personal and longtime friend of Helen Keller, and his wife Mabel was deaf (though none of their children were).

Awards, honours and tributes

In 1880, Bell received the Volta Prize of 50,000 francs ($10,000) for the invention of the telephone from L’Académie française, representing the French government, in Paris. Among the luminaries who judged were Victor Hugo and Alexandre Dumas, fils. The Volta Prize was established by Napoleon Banaparte in 1803 to honor Alessandro Volta, an Italian physicist noted for developing the battery. (The modern usage of the word "volt" is derived from his name.) Since he was reaching affluent circumstances himself, Bell used the money from the Prize to create a number of social structures in and around Washington, D.C. using the symbolic "Volta": the "Volta Fund," "Volta Laboratories" and "Volta Bureau."

In partnership with Gardiner Hubbard, Bell established the publication Science in 1883. In 1888, Bell was one of the founding members of the National Geographic Society and became its second president (1897–1904) and Regent of the Smithsonian Institution (1898–1922). He was the recipient of many honours. The French government conferred on him the decoration of the Légion d'honneur (Legion of Honour); the Royal Society of Arts in London awarded him the Albert Medal in 1902; and the University of Würzburg, Bavaria, granted him a Ph.D. He was awarded the AIEE's Edison Medal in 1914 "For meritorious achievement in the invention of the telephone."

The bel (B) is a unit of measurement invented by Bell Labs and named after Bell. The bel was too large for everyday use, so the decibel (dB), equal to 0.1 B, became more commonly used as a unit for measuring sound intensity.[101]

The IEEE's Alexander Graham Bell Medal has been presented since 1976 to an individual or team, honoring outstanding contributions in the field of telecommunications.

A number of historic sites and other marks commemorate Alexander Graham Bell, as well as the world's first telephone company:

  • The world's first telephone company building, the Henderson Home, of the nascent Bell Telephone Company, originally built on Sheridan Street within the city of Brantford, Ontario, and then carefully relocated in 1969 to the historic Bell Homestead. Both the Bell Homestead and the Bell Telephone Company building, are maintained by the Bell Homestead Society and are open to visitors.

A large number of Bell's writings, notebooks, papers and other documents rest at the United States Library of Congress Manuscript Devision, as the Alexander Graham Bell Family Papers; the collection is available for online viewing. Another large collection of Bell's documents resides at the Alexander Graham Bell Institute.

Death

Bell died of pernicious anemia on 2 August 1922, at his private estate, Beinn Bhreagh, Nova Scotia, at age 75.[102] While tending to her husband after a long illness, Mabel whispered, "Don't leave me." By way of reply, Bell traced the sign for "No" – and promptly expired.[103]

Dr. Alexander Graham Bell was buried atop Beinn Bhreagh mountain overlooking Bras d'Or Lake. He was survived by his wife and his two daughters, Elisa May and Marion.[104]

See also

References

Notes

  1. ^ Gray 2006, p. 229.
  2. ^ Bruce 1990, p. 419.
  3. ^ Black 1997, p. 18. Quote: "He thought he could harness the new electronic technology by creating a machine with a transmitter and receiver that would send sounds telegraphically to help people hear."
  4. ^ National Geographic Magazine
  5. ^ MacLeod 1999, p. 19.
  6. ^ Dunn 1990, p. 41.
  7. ^ Petrie 1975, p. 4.
  8. ^ Time Line of Alexander Graham Bell
  9. ^ "Alexander M. Bell Dead. Father of Prof. A.G. Bell Developed Sign Language for Mutes." New York Times Tuesday, 8 August 1905.
  10. ^ Call me Alexander Graham Bell Note: Bell typically signed his name in full on his correspondence.
  11. ^ Groundwater 2005, p. 23.
  12. ^ Bruce 1990, p. 17–19.
  13. ^ a b Bruce 1990, p. 16.
  14. ^ a b c Gray 2006, p. 8.
  15. ^ Gray 2006, p. 9.
  16. ^ Mackay 1997, p.25.
  17. ^ Mackay 1997, p. 24.
  18. ^ a b Petrie 1975, p. 7.
  19. ^ Mackay 1997, p. 31.
  20. ^ Gray 2006, p. 11.
  21. ^ Town 1988, p. 7.
  22. ^ Bruce 1990, p. 37.
  23. ^ a b c Groundwater 2005, p. 25.
  24. ^ Petrie 1975, p. 7–9.
  25. ^ Petrie 1975, p. 9.
  26. ^ a b Groundwater 2005, p. 30.
  27. ^ Groundwater 2005, p. 31.
  28. ^ Micklos 2006, p. 8.
  29. ^ Bruce 1990, p. 45.
  30. ^ Bruce 1990, p. 67–68. Note: The family pet was given to his brother's family.
  31. ^ Bruce 1990, p. 68.
  32. ^ Groundwater 2005, p. 33.
  33. ^ Groundwater 2005, p. 33.
  34. ^ Mackay 1997, p. 50.
  35. ^ Petrie 1975, p. 10.
  36. ^ Mackay 1997, p. 61. Note: The estate is today known as the "Bell Homestead."
  37. ^ a b Wing 1980, p. 10.
  38. ^ Groundwater 2005, p. 34.
  39. ^ Mackay 1997, p. 62. Note: Bell would later write that he had come to Canada a "dying man."
  40. ^ Groundwater 2005, p. 35. Note: Bell was thrilled at his recognition by the Six Nations Reserve and throughout his life, would launch into a Mohawk war dance when he was excited.
  41. ^ Bruce 1990, p. 74.
  42. ^ Town 1988, p. 12.
  43. ^ Alexander Graham Bell 1979, p. 8. Note: In later years, Bell described the invention of the telephone and linked it to his "dreaming place."
  44. ^ a b Groundwater 2005, p. 39.
  45. ^ Petrie 1975, p. 14.
  46. ^ Petrie 1975, p. 15.
  47. ^ Town 1988, p. 12–13.
  48. ^ Petrie 1975, p. 17.
  49. ^ Town 1988, p. 15.
  50. ^ Town 1988, p. 16.
  51. ^ Dunn 1990, p. 20.
  52. ^ Alexander Graham Bell 1979, p. 8. Quote: "Brantford is justified in calling herself 'The Telephone City' because the telephone originated there. It was invented in Brantford at Tutela Heights in the summer of 1974."
  53. ^ Matthews 1999, p. 19–21.
  54. ^ Matthews 1999, p. 21.
  55. ^ A History of Electrical Engineering
  56. ^ Town 1988, p. 17.
  57. ^ Evenson 2000, p. 18–25.
  58. ^ See Elisha Gray and Alexander Bell Controversy.
  59. ^ MacLeod 1999, p. 12–13. Note: A copy of the original patent is shown, described as "probably the most valuable patent ever."
  60. ^ Bell's Lab notebook I, p. 40–41 (image 22).
  61. ^ MacLeod 1999, p. 12.
  62. ^ Shulman 2008, p. 175–177.
  63. ^ MacLeod 1999, p. 14.
  64. ^ Fenster, Julie M. "Inventing the Telephone—And Triggering All-Out Patent War." American Heritage, 2006, AmericanHeritage.com.
  65. ^ Winfield 1987, p. 21.
  66. ^ Webb 1991, p. 15.
  67. ^ Ross 1995, p. 21–22.
  68. ^ "Phone to Pacific From the Atlantic." New York Times, 26 January 1915. Retrieved: 21 July 2007.
  69. ^ MacLeod 1999, p. 19.
  70. ^ Black 1997, p. 19.
  71. ^ Mackay 1997, p. 179.
  72. ^ Bruce 1990, p. 277.
  73. ^ Groundwater 2005, p. 95.
  74. ^ Bruce 1990, p. 271–272. Note: Meucci had a "tin-can on a string" telephone that could never have been patented as it was not an original invention. Bell's lawyer, William Sorrow later wrote: "Meucci is the silliest and weakest imposter who has ever turned up against the patent."
  75. ^ Vito Fossella's Press Release on Resolution 269 Original material about Meucci's work and his trial against Bell can be found here: Basilio Catania's Work on Antonio Meucci, [http://www.aei.it/ita/museo/mam_intel.htm Federazione Italiana di Elettrotecnica Museo Antonio Meucci
  76. ^ Basilio Catania 2002 "The United States Government vs. Alexander Graham Bell. An important acknowledgment for Antonio Meucci" Bulletin of Science Technology Society. 2002; 22: p. 426–442.
  77. ^ Antonio Meucci Note: Tomas Farley also writes that, "Nearly every scholar agrees that Bell and Watson were the first to transmit intelligible speech by electrical means. Others transmitted a sound or a click or a buzz but our boys [Bell and Watson] were the first to transmit speech one could understand."
  78. ^ Mackay 1997, p. 178.
  79. ^ Parker 1995, p. 23. Note: Many of the lawsuits became rancorous with Elisha Gray becoming particularly bitter over Bell's ascendancy in the telephone debate but Alec refused to launch counter actions for libel.
  80. ^ Dunn 1990, p. 28.
  81. ^ Mackay 1997, p. 120.
  82. ^ "Mrs. A.G. Bell Dies. Inspired Telephone. Deaf Girl's Romance With Distinguished Inventor Was Due to Her Affliction." New York Times, 4 January 1923.
  83. ^ "Dr. Gilbert H. Grosvenor Dies; Head of National Geographic, 90; Editor of Magazine 55 Years Introduced Photos, Increased Circulation to 4.5 Million." New York Times, 5 February 1966. Quote: Baddeck, Nova Scotia, 4 February 1964 (Canadian Press): Dr. Gilbert H. Grosvenor, chairman of the board and former president of the National Geographic Society and editor of the National Geographic magazine from 1899 to 1954, died on the Cape Breton Island estate once owned by his father-in-law, the inventor Alexander Graham Bell. He was 90 years old.
  84. ^ "Mrs. Gilbert Grosvenor Dead; Joined in Geographic's Treks; Married Professor's Son." New York Times, 27 December 1964. Quote: Washington, DC, 26 December 1964. Mrs. Elsie May Bell Grosvenor, wife of Dr. Gilbert Grosvenor, chairman of the board of the National Geographic Society, died this evening at her home in Bethesda, Maryland. She was 86 years old. Death was attributed to heart disease and old age.
  85. ^ "Mrs. David Fairchild, 82, Dead; Daughter of Bell, Phone Inventor." New York Times, 25 September 1962. Quote: Baddeck, Nova Scotia, September 24 1962 (The Canadian Press) Mrs. Marian Bell Fairchild of Miami, widow of David Fairchild, noted plant explorer, and daughter of the telephone pioneer Alexander Graham Bell, died tonight at her summer home. She was 82 years old.
  86. ^ Bruce 1990, p. 90, 471–472.
  87. ^ Tulloch 2006, p. 25–27. Note: Under the direction of the Boston architects, Cabot, Everett and Mead, a Nova Scotia company, Rhodes, Curry and Company, carried out the actual construction.
  88. ^ MacLeod 1999, p. 22.
  89. ^ Tulloch 2006, p. 42.
  90. ^ Gray 2006, p. 219.
  91. ^ a b Grosvenor and Wesson 1997, p. 107.
  92. ^ Boileau 2004, p. 18.
  93. ^ Boileau 2004, p. 28–30.
  94. ^ Boileau 2004, p. 30.
  95. ^ Phillips 1977, p. 95.
  96. ^ "Selfridge Aerodrome Sails Steadily for 319 Feet." Washington Post 13 May 1908. Quote: At 25 to 30 Miles an Hour. First Public Trip of Heavier-than-air Car in America. Professor Alexander Graham Bell's New Machine, Built After Plans by Lieutenant Selfridge, Shown to Be Practicable by Flight Over Keuka Lake. Portion of Tail Gives Way, Bringing the Test to an End. Views of an Expert. Hammondsport, New York, 12 March 1908.
  97. ^ Phillips 1977, p. 96.
  98. ^ Phillips 1977, p. 96–97.
  99. ^ Bell, Alexander Graham. "Memoir upon the formation of a deaf variety of the human race." Alexander Graham Bell Association for the Deaf, 1883. Retrieved: 13 December 2007.
  100. ^ Bruce 1990, p. 410–417.
  101. ^ Decibel Note: The decibel is defined as one tenth of a bel.
  102. ^ Gray 2006, p. 418.
  103. ^ Bruce 1990, p. 491.
  104. ^ "Dr. Bell, Inventor of Telephone, Dies." New York Times, 3 August 1922. Retrieved: 21 July 2007. Quote: Dr. Alexander Graham Bell, inventor of the telephone, died at 2 o'clock this morning at Beinn Breagh, his estate near Baddeck.

Bibliography

  • Alexander Graham Bell (booklet). Halifax, Nova Scotia: Maritime Telegraph & Telephone Limited, 1979.
  • Bruce, Robert V. Bell: Alexander Bell and the Conquest of Solitude. Ithaca, New York: Cornell University Press, 1990. ISBN 0-80149691-8.
  • Black, Harry. Canadian Scientists and Inventors: Biographies of People who made a Difference. Markham, Ontario: Pembroke Publishers Limited, 1997. ISBN 1-55138-081-1.
  • Boileau, John. Fastest in the World: The Saga of Canada's Revolutionary Hydrofoils. Halifax, Nova Soctia: Formac Publishing Company Limited, 2004. ISBN 0-88780-621-X.
  • Dunn, Andrew. Alexander Graham Bell (Pioneers of Science series). East Sussex, UK: Wayland (Publishers) Limited, 1990. ISBN 1-8521-958-0.
  • Eber, Dorothy Harley. Genius at Work: Images of Alexander Graham Bell. Toronto: McClelland and Stewart, 1982. ISBN 0-7710-3036-3.
  • Evenson, A. Edward. The Telephone Patent Conspiracy of 1876: The Elisha Gray - Alexander Bell Controversy. Jefferson, North Carolina: McFarland Publishing, 2000. ISBN 0-7864-0138-9.
  • Gray, Charlotte. Reluctant Genius: Alexander Graham Bell and the Passion for Invention. New York: Arcade Publishing, 2006. ISBN 1-55970-809-3.
  • Groundwater, Jennifer. Alexander Graham Bell: The Spirit of Invention. Calgary: Altitude Publishing, 2005. ISBN 1-55439-006-0.
  • Grosvenor, Edwin S. and Wesson, Morgan. Alexander Graham Bell: The Life and Times of the Man Who Invented the Telephone. New York: Harry N. Abrahms, Inc., 1997. ISBN 0-8109-4005-1.
  • Mackay, James. Sounds Out of Silence: A life of Alexander Graham Bell. Edinburgh: Mainstream Publishing Company, 1997. ISBN 1-85158-833-7.
  • MacLeod, Elizabeth. Alexander Graham Bell: An Inventive Life. Toronto: Kids Can Press, 1999. ISBN 1-55074-456-9.
  • Matthews, Tom L. Always Inventing: A Photobiography of Alexander Graham Bell. Washington, DC: National Geographic Society, 1999. ISBN 0-7922-7391-5.
  • Micklos, John Jr. Alexander Graham Bell: Inventor of the Telephone. New York: Harper Collins Publishers Ltd., 2006. ISBN 978-0-06-057618-9.
  • Parker, Steve. Alexander Graham Bell and the Telephone(Science Discoveries series). New York: Chelsea House Publishers, 1995. ISBN 0-7910-3004-0.
  • Petrie, A. Roy. Alexander Graham Bell. Don Mills, Ontario: Fitzhenry & Whiteside Limited, 1975. ISBN 0-88902-209-7.
  • Phillips, Allan. Into the 20th Century: 1900/1910 (Canada's Illustrated Heritage). Toronto: Natural Science of Canada Limited, 1977. ISBN 0-9196-4422-8.
  • Ross, Stewart. Alexander Graham Bell (Scientists who Made History series). New York: Raintree Steck-Vaughn Publishers, 2001. ISBN 0-7398-441-6.
  • Shulman, Seth. The Telephone Gambit: Chasing Alexander Bell's Secret. New York: Norton & Company, 2008. ISBN 978-0-393-06206-9.
  • Town, Florida. Alexander Graham Bell. Toronto: Grolier Limited, 1988. ISBN 0-7172-1950-X.
  • Tulloch, Judith. The Bell Family in Baddeck: Alexander Graham Bell and Mabel Bell in Cape Breton. Halifax: Formac Publishing Company Limited, 2006. ISBN 978-0-88780-713-8.
  • Walters, Eric. The Hydrofoil Mystery. Toronto: Puffin Books, 1999. ISBN 0-14-130220-8.
  • Webb, Michael, ed. Alexander Graham Bell: Inventor of the Telephone. Mississauga, Ontario, Canada: Copp Clark Pitman Ltd., 1991. ISBN 0-7730-5049-3.
  • Winfield, Richard. Never the Twain Shall Meet: Bell, Gallaudet, and the Communications Debate. Washington, DC: Gallaudet University Press, 1987. ISBN 0-913580-99-6.
  • Wing, Chris. Alexander Graham Bell at Baddeck. Baddeck, Nova Scotia: Christopher King, 1980.

Further reading

  • Bender, Lionel. Invention (Eyewitness Books series). London: Dorling Kindersley Books, 1991. ISBN 0-7737-2464-8.
  • Coe, Lewis. The Telephone and Its Several Inventors: A History. Jefferson, North Carolina: McFarland Publishing, 1995. ISBN 0-7864-0138-9.
  • Costain, Thomas. The Chord of Steel: Alexander Graham Bell and the Invention of the Telephone. Garden City, New York: Doubleday and Company, 1960.

Movie biographies

Bell's patents

U.S. patent images in TIFF format

Template:S-awards
Preceded by IEEE Edison Medal
1914
Succeeded by
Preceded by President of the National Geographic Society
1897–1904
Succeeded by

Template:Persondata

Template:Link FA